Домой Банки Перспективы развития мировой электроэнергетики.

Перспективы развития мировой электроэнергетики.



ВВЕДЕНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1. Историко-географические особенности развития электроэнергетики в России. . . . . . . . . . .4

2. Территориальное размещение производств электроэнергетики в Российской Федерации. 6

3. Единая энергетическая система страны. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4. Проблемы и перспективы развития электроэнергетики. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

ЗАКЛЮЧЕНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Список используемых источников. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ПРИЛОЖЕНИЕ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

ПРИЛОЖЕНИЕ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

ПРИЛОЖЕНИЕ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

ПРИЛОЖЕНИЕ 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

ПРИЛОЖЕНИЕ 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

ВВЕДЕНИЕ

Электроэнергетика, ведущая и составная часть энергетики. Она обеспечивает генерирование (производство), трансформацию и потребление электроэнергии, кроме того, электроэнергетика играет районообразующую роль (являясь стержнем материально-технической базы общества), а также способствует оптимизации территориальной организации производительных сил. В экономически развитых странах технические средства электроэнергетики объединяются в автоматизированные и централизованно управляемые электроэнергетические системы.

Электроэнергетика наряду с другими отраслями народного хозяйства рассматривается как часть единой народно - хозяйственной экономической системы. В настоящее время без электрической энергии наша жизнь немыслима. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Без электроэнергии невозможно действие современных средств связи и развитие кибернетики, вычислительной и космической техники. Представить без электроэнергии нашу жизнь невозможно.

Основным потребителем электроэнергии остается промышленность, хотя ее удельный вес в общем полезном потреблении электроэнергии значительно снижается. Электрическая энергия в промышленности применяется для приведения в действие различных механизмов и непосредственно в технологических процессах.

В сельском хозяйстве электроэнергия применяется для обогрева теплиц и помещений для скота, освещения, автоматизации ручного труда на фермах.

Огромную роль электроэнергия играет в транспортном комплексе. Большое количество электроэнергии потребляет электрифицированный железнодорожный транспорт, что позволяет повышать пропускную способность дорог за счет увеличения скорости движения поездов, снижать себестоимость перевозок, повышать экономию топлива.

Электроэнергия в быту является основной частью обеспечения комфортабельной жизни людей. Многие бытовые приборы (холодильники, телевизоры, стиральные машины, утюги и другие) были созданы благодаря развитию электротехнической промышленности.

Поэтому, актуальность выбранной мною темы является очевидной, также как очевидна важность электроэнергетики в хозяйственной жизни нашей страны.

Итак, задачами и целью данной работы являются:

Рассмотреть структуру электроэнергетики;

Изучить её размещение;

Рассмотреть современный уровень развития электроэнергетики;

Охарактеризовать особенности развития и размещения электроэнергетики в России.

    Историко-географические особенности развития электроэнергетики в России.

Развитие электроэнергетики России связано с планом ГОЭЛРО (1920 г.) сроком на 15 лет, который предусматривал строительство 10 ГЭС общей мощностью 640 тыс. кВт. План был выполнен с опережением: к концу 1935 г. было построено 40 районных электростанций. Таким образом, план ГОЭЛРО создал базу индустриализации России, и она вышла на второе место по производству электроэнергии в мире.

В начале XX века в структуре потребления энергоресурсов абсолютно преобладающее место занимал уголь. Например, в развитых странах к 1950г. на долю угля приходилось 74%, а нефти – 17% в общем объеме энергопотребления. При этом основная доля энергоресурсов использовалась внутри стран, где они добывались.

Среднегодовые темпы роста энергопотребления в мире в первой половине XX в. составляли 2-3%, а в 1950-1975гг. - уже 5%.

Чтобы покрыть прирост энергопотребления во второй половине XX в. мировая структура потребления энергоресурсов претерпевает большие изменения. В 50-60-х гг. на смену углю все больше приходят нефть и газ. В период с 1952 по 1972гг. нефть была дешевой. Цена на нее на мировом рынке доходила до 14 долл./т. Во второй половине 70-х также начинается освоение крупных месторождений природного газа и его потребление постепенно наращивается, вытесняя уголь.

До начала 70-х годов рост потребления энергоресурсов был в основном экстенсивным. В развитых странах его темп фактически определялся темпом роста промышленного производства. Между тем, освоенные месторождения начинают истощаться, и начинает расти импорт энергоресурсов, в первую очередь – нефти.

В 1973г. разразился энергетический кризис. Мировая цена на нефть подскочила до 250-300 долл./т. Одной из причин кризиса стало сокращение ее добычи в легкодоступных местах и перемещение в районы с экстремальными природными условиями и на континентальный шельф. Другой причиной стало стремление основных стран - экспортеров нефти (членов ОПЕК), которыми в основном являются развивающиеся страны, более эффективно использовать свои преимущества владельцев основной части мировых запасов этого ценного сырья.

В этот период ведущие страны мира были вынуждены пересмотреть свои концепции развития энергетики. В результате, прогнозы роста энергопотребления стали более умеренными. Значительное место в программах развития энергетики стало отводиться энергосбережению. Если до энергетического кризиса 70-х энергопотребление в мире прогнозировалось к 2000 г. на уровне 20-25 млрд. т условного топлива, то после него прогнозы были скорректированы в сторону заметного уменьшения до 12,4 млрд. т условного топлива.

Промышленно развитые страны принимают серьезнейшие меры по обеспечению экономии потребления первичных энергоресурсов. Энергосбережение все больше занимает одно из центральных мест в их национальных экономических концепциях. Происходит перестройка отраслевой структуры национальных экономик. Преимущество отдается мало энергоемким отраслям и технологиям. Происходит свертывание энергоемких производств. Активно развиваются энергосберегающие технологии, в первую очередь, в энергоемких отраслях: металлургии, металлообрабатывающей промышленности, транспорте. Реализуются масштабные научно-технические программы по поиску и разработке альтернативных энергетических технологий. В период с начала 70х до конца 80х гг. энергоемкость ВВП в США снизилась на 40%, в Японии – на 30%.

В этот же период идет бурное развитие атомной энергетики. В 70-е годы и за первую половину 80-х годов в мире было пущено в эксплуатацию около 65% ныне действующих АЭС.

В этот период в политический и экономический обиход вводится понятие энергетической безопасности государства. Энергетические стратегии развитых стран нацеливаются не только на сокращение потребления конкретных энергоносителей (угля или нефти), но и в целом на сокращение потребления любых энергоресурсов и диверсификацию их источников.

В результате всех этих мер в развитых странах заметно снизился среднегодовой темп прироста потребления первичных энергоресурсов: с 1,8% в 80-е гг. до 1,45% в 1991-2000 гг. По прогнозу до 2015 г. он не превысит 1,25%.

Во второй половине 80-х появился еще один фактор, оказывающий сегодня все большее влияние на структуру и тенденции развития ТЭК. Ученые и политики всего мира активно заговорили о последствиях воздействия на природу техногенной деятельности человека, в частности, влиянии на окружающую среду объектов ТЭК. Ужесточение международных требований по охране окружающей среды с целью снижения парникового эффекта и выбросов в атмосферу (по решению конференции в Киото в 1997г.) должно привести к снижению потребления угля и нефти как наиболее влияющих на экологию энергоресурсов, а также стимулировать совершенствование существующих и создание новых энергетических технологий.

    Территориальное размещение производств электроэнергетики в Российской Федерации.

Электроэнергетика сильнее, чем все другие отрасли промышленности, способствует развитию и территориальной оптимизации размещения производительных сил. Это выражается в следующем (по А.Т.Хрущёву): 1) вовлекаются в использование топливно-энергетические ресурсы, удаленные от потребителей; 2) возможен промежуточный отбор электроэнергии для снабжения ею районов, через которые проходят линии высоковольтных электропередач, что способствует росту уровня территориальной освоенности этих районов, повышению эффективности экономики и уровня комфортности проживания в них; 3) возникают дополнительные возможности для создания электроёмких и теплоёмких производств (в которых доля топливно-энергетических затрат в себестоимости готовой продукции очень велика); 4) электроэнергетика имеет большое районообразующее значение, именно она во многом определяет производственную специализацию районов.

Опыт развития отечественной электроэнергетики выработал следующие принципы размещения и функционирования предприятий этой отрасли промышленности: 1) концентрация производства электроэнергии на крупных районных электростанциях, использующих относительно дешёвое топливо и энергоресурсы; 2) комбинирование производства электроэнергии и тепла для теплофикации населенных пунктов, прежде всего городов; 3) широкое освоение гидроресурсов с учетом комплексного решения задач электроэнергетики, транспорта, водоснабжения, ирригации, рыбоводства; 4) необходимость развития атомной энергетики, особенно в районах с напряженным топливно-энергетическим балансом, при условии подчеркнутого и исключительного внимания к соблюдению правил эксплуатации АЭС, обеспечение безопасности и надежности их функционирования; 5) создание энергосистем, формирующих единую высоковольтную сеть страны.

Размещение предприятий электроэнергетики зависят от ряда факторов, основные из них – топливно-энергетические ресурсы и потребители. По степени обеспеченности топливно-энергетическими ресурсами районы России можно разделить на три группы: 1) наиболее высокая – Дальневосточный, Восточно-Сибирский, Западно-Сибирский; 2) относительно высокая – Северный, Северо-Кавказский; 3) низкая – Северо-Западный, Центральный, Центрально-Черноземный, Поволжский, Уральский.

Расположение топливно-энергетических ресурсов не совпадает с размещением населения, производством и потребителем электроэнергии. Подавляющая часть произведенной электроэнергии расходуется в европейской части России. По производству электроэнергии среди экономических районов к концу 1990-х гг. выделялись Центральный, а по потреблению – Уральский. В числе электродефицитных районов: Уральский, Северный, Центрально-Черноземный, Волго-Вятский (см. приложение 1).

Крупные электростанции играют значительную районообразующую роль. На их базе возникают энергоёмкие и теплоёмкие производства.

Электроэнергетика включает тепловые электростанции, атомные электростанции, гидроэлектростанции (включая гидроаккумулирующие и приливные), прочие электростанции (ветростанции, гелиостанции, геотермальные), электрические сети, тепловые сети, самостоятельные котельные.

Тепловые электростанции (ТЭС). Основной тип электростанций в России – тепловые, работающие на органическом топливе (уголь, газ, мазут, сланцы, торф). Основную роль играют мощные (более 2 млн кВт) государственные районные электростанции (ГРЭС), обеспечивающие потребности экономического района и работающие в энергосистемах. На размещение тепловых электростанций оказывают основное влияние топливный и потребительский факторы.

При выборе места для строительства ТЭС учитывают сравнительную эффективность транспортировки топлива и электроэнергии. Если затраты на перевозку топлива превышают издержки на передачу электроэнергии целесообразно размещать непосредственно у источников топлива, при более высокой эффективности транспортировки топлива электростанции размещают вблизи потребителей электроэнергии. Наиболее мощные ТЭС расположены, как правило, в местах добычи топлива (чем крупнее электростанция, тем дальше она может передавать энергию).

ГРЭС мощностью более 2 млн кВт расположены в следующих экономических районах: Центральном (Костромская, Рязанская, Конаковская); Уральская (Рефтинская, Троицкая, Ириклинская); Поволжском (Заинская); Восточно-Сибирском (Назаровская); Западно-Сибирском (Сургутские); Северо-Западном (Киришская) (см. приложение 2).

К тепловым электростанциям относятся и теплоэлектроцентрали (ТЭЦ), обеспечивающие теплом предприятия и жилье, с одновременным производством электроэнергии. ТЭЦ размещаются в пунктах потребления пара и горячей воды, поскольку радиус передачи тепла невелик (10-12 км).

Положительные свойства ТЭС:

Относительно свободное размещение, связанное с широким распространением топливных ресурсов в России;

Способность вырабатывать электроэнергию без сезонных колебаний в отличие от ГЭС).

Отрицательные свойства ТЭС:

Используют невозобновимые топливные ресурсы;

Обладают низким коэффициентом полезного действия (КПД);

Оказывают неблагоприятное воздействие на окружающую среду;

Имеют большие затраты на добычу, перевозку, переработку и удаление отходов топлива.

Гидравлические электростанции (ГЭС). Они занимают второе место по количеству вырабатываемой электроэнергии. Гидроэлектростанции являются эффективным источником энергии, поскольку они используют возобновимые ресурсы, они просты в управлении (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС), имеют высокий КПД (более 80%) 1 , производят самую дешевую энергию.

Определяющее влияние на размещение гидроэлектростанций оказывают размеры запасов гидроресурсов, природные (рельеф местности, характер реки, ее режим и др.) и хозяйственные (размер ущерба от затопления территории, связанного с созданием плотины и водохранилища ГЭС, ущерба рыбному хозяйству и др.), условия их использования.

Запасы гидроресурсов и эффективность использования водной энергии в районах России различны. Большая часть гидроэнергоресурсов страны (более 2/3 запасов) сосредоточена в Восточной Сибири и на Дальнем Востоке. В этих же районах исключительно благоприятны природные условия для строительства и функционирования ГЭС – многоводность, естественная зарегулированность рек (например, реки Ангары озером Байкал), позволяющие вырабатывать электроэнергию на мощных ГЭС равномерно, без сезонных колебаний, наличие скальных оснований для возведения высоких платин и др.

Эти и другие особенности обуславливают здесь более высокую экономическую эффективность строительства ГЭС (удельные капиталовложения в 2-3 раза ниже, а стоимость электроэнергии в 4-5 раз дешевле), чем в районах европейской части страны. Поэтому самые крупные в стране ГЭС построены на реках Восточной Сибири (Ангара, Енисей). На Ангаре, Енисее и других реках России строительство ГЭС ведется, как правило, каскадами, которые представляют собой группу электростанций, расположенных ступенями по течению водного потока, для последовательности использования его энергии. Крупнейший в мире Ангаро-Енисейский гидроэнергетический каскад имеет общую мощность около 22 млн кВт. В его состав входят гидроэлектростанции: Саяно-Шушенская, Красноярская, Иркутская, Братская, Усть-Илимская.

Каскад из мощных электростанций создан также в европейской части страны на Волге и Каме (Волжско-Камский каскад): Волжская (вблизи Самары), Волжская (вблизи Волгограда), Саратовская, Чебоксарская, Воткинская и др.

В приложении 3 представлены основные каскады ГЭС в России.

Менее мощные ГЭС созданы на Дальнем Востоке, в Западной Сибири, на Северном Кавказе и в других районах России. В европейской части страны, испытывающей острый дефицит в электроэнергии, весьма перспективно строительство особого вида гидроэлектростанций – гидроаккумулирующих (ГАЭС). Одна из таких электростанций уже построена – Загорская ГАЭС (1,2 млн. кВт) в Московской области.

Положительные свойства ГЭС: более высокая маневренность и надежность работы оборудования; высокая производительность труда; возобновляемость источника энергии; отсутствие затрат на добычу, перевозку и удаление отходов топлива; низкая себестоимость.

Отрицательные свойства ГЭС: возможность затопления населенных пунктов, сельхозугодий и коммуникаций; отрицательное воздействие на фору, фауну; дороговизна строительства.

Атомные электростанции (АЭС) производят электроэнергию более дешевую, чем ТЭС, работающих на угле или мазуте. Их доля в суммарной выработке электроэнергии в России не превышает 11% (в Литве – 76%, Франции – 76%, Бельгии – 65%, Швеции – 51%, Словакии – 49%, ФРГ – 34%, Японии – 30%, США – 20%).

Главным фактором размещения атомных электростанций, использующих в своей работе высокотранспортабельное, ничтожное по весу топливо (для полной годовой загрузки АЭС требуется всего несколько килограммов урана), - потребительский. Крупнейшие АЭС в нашей стране в основном расположены в районах с напряженным топливно-энергетическим балансом. В России действуют 10 АЭС (см. приложение 4), на которых функционирует 30 энергоблоков. На АЭС эксплуатируется реакторы трех основных типов: водо-водяные (ВВЭР), большой мощности канальные урано-графитовые (РБМК) и на быстрых нейтронах (БН). Атомные электростанции в России объедены в концерн «Росэнергоатом».

Положительные свойства АЭС: их можно строить в любом районе, независимо от его энергетических ресурсов; атомное топливо отличается большим содержанием энергии; АЭС не делают выбросов в атмосферу в условиях безаварийной работы; не поглощают кислород.

Отрицательные свойства АЭС: сложились захоронения радиоактивных отходов (для их вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения); тепловое загрязнение используемых АЭС водоемов.

В отечественной электроэнергетике используются альтернативные источники энергии: солнца, ветра, внутреннего тепла земли, морских приливов. Построены природные электростанции (ПЭС). На приливных волнах на Кольском полуострове сооружена Кислогубская ПЭС (400 кВт), который более 30 лет; На терминальных водах Камчатки поострена Паужетская ГеоТЭС. Ветровые энергоустановки имеются в жилых поселках Крайнего Севера, гелиоустановки на Северном Кавказе.

3. Единая энергетическая система страны

Энергосистема – это группы электростанций разных типов, объединенные высоковольтными линиями электропередачи (ЛЭП) и управляемые из одного центра. Энергосистемы в электроэнергетике России объединяют производство, передачу и распределение электроэнергии между потребителями. В энергосистеме для каждой электростанции есть возможность выбрать наиболее экономичный режим работы. Причем если в составе энергосистемы высока доля ГЭС, то ее маневренные возможности повышаются, а себестоимость электроэнергии относительно ниже; наоборот, в системе, объединяющей только ТЭС, они наиболее ограничены, а себестоимость электроэнергии выше.

Для более экономного использования потенциала электростанций России создана Единая энергетическая система (ЕЭС), в которой входят более 700 крупных электростанций, на которых сосредоточено 84% мощности всех электростанций страны. Создание ЕЭС имеет экономические преимущества. Объединенные энергетические системы (ОЭС) Северо-Запада, Центра, Поволжья, Юга, Северного Кавказа, Урала входят в ЕЭС европейской части. Они объединены такими высоковольтными магистралями, как Самара – Москва (500 кВ), Самара – Челябинск, Волгоград – Москва (500 кВ), Волгоград – Донбасс (800 кВ), Москва – Санкт-Петербург (750 кВ).

Основная цель создания и развития Единой энергетической системы России состоит в обеспечении надежного и экономичного электроснабжения потребителей на территории России с максимально возможной реализацией преимуществ параллельной работы энергосистем.

Единая энергетическая система России входит в состав крупного энергетического объединения - Единой энергосистемы (ЕЭС) бывшего СССР, включающего также энергосистемы независимых государств: Азербайджана, Армении, Беларуси, Грузии, Казахстана, Латвии, Литвы, Молдовы, Украины и Эстонии. С ЕЭС продолжают синхронно работать энергосистемы семи стран восточной Европы - Болгарии, Венгрии, Восточной части Германии, Польши, Румынии, Чехии и Словакии.

Электростанциями, входящими в ЕЭС, вырабатывается более 90% электроэнергии, производимой в независимых государствах – бывших республиках СССР. Объединение энергосистем в ЕЭС позволяет: обеспечить снижение необходимой суммарной установленной мощности электростанций за счет совмещения максимумов нагрузки энергосистем, которые имеют разницу поясного времени и отличия в графиках нагрузки; сократить требуемую резервную мощность на электростанциях; осуществить наиболее рациональное использование располагаемых первичных энергоресурсов с учетом изменяющейся топливной конъюнктуры; удешевить энергетическое строительство; улучшить экологическую ситуацию.

Для совместной работы электроэнергетических объектов, функционирующих в составе Единой энергосистемы, создан координационный орган Электроэнергетический Совет стран СНГ.

Система российской электроэнергетики характеризуется довольно сильной региональной раздробленностью вследствие современного состояния линий высоковольтных передач. В настоящее время энергосистема Дальнего района не соединена с остальной частью России и функционирует независимо. Соединение энергосистем Сибири и Европейской части России также очень ограничено. Энергосистемы пяти европейских регионов России (Северо-Западного, Центрального, Поволжского, Уральского и Северо-Кавказского) соединены между собой, но пропускная мощность здесь в среднем намного меньше, чем внутри самих регионов. Энергосистемы этих пяти регионов, а также Сибири и Дальнего Востока рассматриваются в России как отдельные региональные объединенные энергосистемы. Они связывают 68 из 77 существующих региональных энергосистем внутри страны. Остальные девять энергосистем полностью изолированы.

Преимущества системы ЕЭС, унаследовавшей инфраструктуру от ЕЭС СССР, заключаются в выравнивании суточных графиков потребления электроэнергии, в том числе за счет ее последовательных перетоков между часовыми поясами, улучшении экономических показателей электростанций, создании условий для полной электрификации территорий и всего народного хозяйства.

В конце 1992 г. было зарегистрировано Российское акционерное общество энергетики и электрификации (РАО ЕЭС), созданное для управления ЕЭС и организации надежного энергосбережения народного хозяйства и населения. В РАО ЕЭС входят более 700 территориальных АО, оно объединяет около 600 ТЭС, 9 АЭС и более 100 ГЭС. РАО ЕЭС работает параллельно с энергосистемами стран СНГ и Балтии, а также с энергосистемами некоторых стран Восточной Европы. За пределами РАО ЕЭС пока остаются крупные энергосистемы Восточной Сибири.

Контрольный пакет РАО ЕЭС закреплен в государственной собственности. Как естественный монополист компания находится в системе государственного регулирования тарифов на электричество. В отдельных регионах, например на Дальнем Востоке, федеральное правительство субсидирует энерготарифы.

В 1996 году Правительство РФ создало федеральный (общероссийский) оптовый рынок электрической энергии и мощности (ФОРЭМ) для покупки о продажи электроэнергии через сети высоковольтных передач. Практически вся электроэнергия, передаваемая по сетям высоковольтных передач, технически рассматривается как результат сделки на ФОРЭМе. Управляется этот рынок РАО ЕЭС. На ФОРЭМе покупатели и продавцы не заключают контракты друг с другом. Они покупают и продают электроэнергию по фиксированным ценам, а РАО ЕЭС обеспечивает соответствие спроса и предложения. Продавцами электроэнергии, не связанными с РАО ЕЭС, являются атомные электростанции.

4. Проблемы и перспективы развития электроэнергетики.

Основные проблемы развития электроэнергетики России связаны: с технической отсталостью и износом фондов отрасли, несовершенством хозяйственного механизма управления энергетическим хозяйством, включая ценовую и инвестиционную политику, ростом неплатежей энергопотребителей. В условиях кризиса экономики сохраняется высокая энергоемкость производства.

В настоящее время более 18% электростанций полностью выработали свой расчетный ресурс установленной мощности. Очень медленно идет процесс энергосбережения. Правительство пытается решить проблему разных сторон: одновременно идет акционирование отрасли (51% акций остается у государства), привлекаются иностранные инвестиции и начала внедряться программа по снижению энергоемкости производства.

В качестве основных задач развития российской энергетики можно выделить следующее: 1) снижение энергоемкости производства; 2) сохранение единой энергосистемы России; 3) повышение коэффициента используемой мощности энергосистемы; 4) полный переход к рыночным отношениям, освобождение цен на энергоносители, полный переход на мировые цены, возможный отказ от клиринга; 5) скорейшее обновление парка энергосистемы; 6) приведение экологических параметров энергосистемы к уровню мировых стандартов.

Сейчас перед отраслью стоит ряд проблем. Важной является экологическая проблема. На данном этапе, в России выброс вредных веществ в окружающую среду на единицу продукции превышает аналогичный показатель на западе в 6-10 раз.

Выбросы загрязняющих веществ в атмосферу энергокомпаниями РАО «ЕЭС России» в 2005-2007 г.г. (SO 2 , NO 2 , твердых частиц), тыс. тонн. (рис. 1)

Рисунок 1.

Снижение выбросов в атмосферу в 2007 г. по сравнению с 2006 г. объясняется уменьшением доли сжигания топлива (мазута и угля) с высоким содержанием серы и золы.

За 2007 год энергокомпании РАО ЕЭС России добились следующих производственно-экологических показателей:

Экстенсивное развитие производства, ускоренное наращивание огромных мощностей привело к тому, что экологический фактор долгое время учитывался крайне мало или вовсе не учитывался. Наиболее не экологична угольная ТЭС, вблизи них радиоактивный уровень в несколько раз превышает уровень радиации в непосредственной близости от АЭС. Использование газа в ТЭС гораздо эффективнее, чем мазута или угля; при сжигании 1 тонны условного топлива образуется 1,7 тонны углерода против 2,7 тонны при сжигании мазута или угля. Экологические параметры, установленные ранее не обеспечивают полной экологической чистоты, в соответствии с ними строилось большинство электростанций.

Новые стандарты экологической чистоты вынесены в специальную государственную программу “Экологически чистая энергетика”. С учетом требований этой программы уже подготовлено несколько проектов и десятки находятся в стадии разработки. Так, существует проект Березовской ГРЭС-2 с блоками на 800 мВт и рукавными фильтрами улавливания пыли, проект ТЭС с парогазовыми установками мощностью по 300 мВт, проект Ростовской ГРЭС, включающий в себя множество принципиально новых технических решений. Отдельно рассмотрим проблемы развития атомной энергетики.

Атомная промышленность и энергетика рассматриваются в Энергетической стратегии (2005-2020гг.) как важнейшая часть энергетики страны, поскольку атомная энергетика потенциально обладает необходимыми качествами для постепенного замещения значительной части традиционной энергетики на ископаемом органическом топливе, а также имеет развитую производственно-строительную базу и достаточные мощности по производству ядерного топлива. При этом основное внимание уделяется обеспечению ядерной безопасности и, прежде всего безопасности АЭС в ходе их эксплуатации. Кроме того, требуется принятие мер по заинтересованности в развитии отрасли общественности, особенно населения, проживающего вблизи АЭС.

Для обеспечения запланированных темпов развития атомной энергетики после 2020 г., сохранения и развития экспортного потенциала уже в настоящее время требуется усиление геологоразведочных работ, направленных на подготовку резервной сырьевой базы природного урана.

Максимальный вариант роста производства электроэнергии на АЭС соответствует как требованиям благоприятного развития экономики, так и прогнозируемой экономически оптимальной структуре производства электроэнергии с учетом географии ее потребления. При этом экономически приоритетной зоной размещения АЭС являются европейские и дальневосточные регионы страны, а также северные районы с дальнепривозным топливом. Меньшие уровни производства энергии на АЭС могут возникнуть при возражениях общественности против указанных масштабов развития АЭС, что потребует соответствующего увеличения добычи угля и мощности угольных электростанций, в том числе в регионах, где АЭС имеют экономический приоритет.

Основные задачи по максимальному варианту: строительство новых АЭС с доведением установленной мощности атомных станций до 32 ГВт в 2010 г. и до 52,6 ГВт в 2020 г.; продление назначенного срока службы действующих энергоблоков до 40-50 лет их эксплуатации с целью максимального высвобождения газа и нефти; экономия средств за счет использования конструктивных и эксплуатационных резервов.

В этом варианте, в частности, намечена достройка в 2000-2010 годы 5 ГВт атомных энергоблоков (двух блоков – на Ростовской АЭС и по одному – на Калининской, Курской и Балаковской станциях) и новое строительство 5,8 ГВт атомных энергоблоков (по одному блоку на Нововоронежской, Белоярской, Калининской, Балаковской, Башкирской и Курской АЭС). В 2011 – 2020 гг. предусмотрено строительство четырех блоков на Ленинградской АЭС, четырех блоков на Северо-Кавказской АЭС, трех блоков Башкирской АЭС, по два блока на Южно-Уральской, Дальневосточной, Приморской, Курской АЭС –2 и Смоленской АЭС – 2, на Архангельской и Хабаровской АТЭЦ и по одному блоку на Нововоронежской, Смоленской и Кольской АЭС – 2.

Одновременно в 2010 – 2020 гг. намечено вывести из эксплуатации 12 энергоблоков первого поколения на Билибинской, Кольской, Курской, Ленинградской и Нововоронежской АЭС.

Основные задачи по минимальному варианту – строительство новых блоков с доведением мощности АЭС до 32 ГВт в 2010 г. и до 35 ГВт в 2020 г. и продление назначенного срока службы действующих энергоблоков на 10 лет.

Основой электроэнергетики России на всю рассматриваемую перспективу останутся тепловые электростанции, удельный вес которых в структуре установленной мощности отрасли составит к 2010 г. 68%, а к 2020 г. – 67-70% (2000 г. – 69%). Они обеспечат выработку, соответственно, 69% и 67-71% всей электроэнергии в стране (2000 г. – 67%).

Учитывая сложную ситуацию в топливодобывающих отраслях и ожидаемый высокий рост выработки электроэнергии на тепловых электростанциях (почти на 40-80 % к 2020 г.), обеспечение электростанций топливом становится в предстоящий период одной из сложнейших проблем в энергетике.

Суммарная потребность для электростанций России в органическом топливе возрастет с 273 млн т у.т. в 2000 г. до 310-350 млн т у.т. в 2010 г. и до 320-400 млн т у.т. в 2020 г. Относительно не высокий прирост потребности в топливе к 2020 г. по сравнению с выработкой электроэнергии связан с практически полной заменой к этому периоду существующего неэкономичного оборудования на новое высокоэффективное, что требует осуществления практически предельных по возможностям вводов генерирующей мощности. В высоком варианте в период 2011-2015 гг. на замену старого оборудования и для обеспечения прироста потребности предлагается вводить 15 млн кВт в год и в период 2016-2020 гг. до 20 млн кВт в год. Любое отставание по вводам приведет к снижению эффективности использования топлива и соответственно к росту его расхода на электростанциях, по сравнению с определенными в Стратегии уровнями.

Необходимость радикального изменения условий топливного обеспечения тепловых электростанций в европейских районах страны и ужесточения экологических требований обусловливает существенные изменения структуры мощности ТЭС по типам электростанций и видам используемого топлива в этих районах. Основным направлением должно стать техническое перевооружение и реконструкция существующих, а также сооружение новых тепловых электростанций. При этом приоритет будет отдан парогазовым и экологически чистым угольным электростанциям, конкурентоспособным в большей части территории России и обеспечивающим повышение эффективности производства энергии. Переход от паротурбинных к парогазовым ТЭС на газе, а позже – и на угле обеспечит постепенное повышение КПД установок до 55 %, а в перспективе до 60 % что позволит существенно снизить прирост потребности ТЭС в топливе.

Для развития Единой энергосистемы России Энергетической стратегией предусматривается:

1) создание сильной электрической связи между восточной и европейской частями ЕЭС России, путем сооружения линий электропередачи напряжением 500 и 1150 кВ. Роль этих связей особенно велика в условиях необходимости переориентации европейских районов на использование угля, позволяя заметно сократить завоз восточных углей для ТЭС;

2) усиление межсистемных связей транзита между ОЭС (объединенной энергетической системой) Средней Волги – ОЭС Центра – ОЭС Северного Кавказа, позволяющего повысить надежность энергоснабжения региона Северного Кавказа, а также ОЭС Урала – ОЭС Средней Волги – ОЭС Центра и ОЭС Урала – ОЭС Северо-Запада для выдачи избыточной мощности ГРЭС Тюмени;

3) усиление системообразующих связей между ОЭС Северо-Запада и Центра;

4) развитие электрической связи между ОЭС Сибири и ОЭС Востока, позволяющей обеспечить параллельную работу всех энергообъединений страны и гарантировать надежное энергоснабжение дефицитных районов Дальнего Востока.

Альтернативная энергетика. Несмотря на то, что Россия по степени использования так называемых нетрадиционных и возобновляемых видов энергии находятся пока в шестом десятке стран мира, развитие этого направления имеет большое значение, особенно учитывая размеры территории страны. Ресурсный потенциал нетрадиционных и возобновляемых источников энергии составляет порядка 5 млрд. т условного топлива в год, а экономический потенциал в самом общем виде достигает не менее 270 млн. т условного топлива (рис. 2).

Пока все попытки использования нетрадиционных и возобновляемых источников энергии в России носят экспериментальный и полуэкспериментальный характер или в лучшем случае такие источники играют роль местных, строго локальных производителей энергии. Последнее относится и к использованию энергии ветра. Это происходит потому, что Россия еще не испытывает дефицита традиционных источников энергии и ее запасы органического топлива и ядерного горючего пока достаточно велики. Однако и сегодня в удаленных или труднодоступных районах России, где нет необходимости строить большую электростанцию, да и обслуживание ее зачастую некому, «нетрадиционные» источники электроэнергии – наилучшее решение проблемы.

Намечаемые уровни развития и технического перевооружения отраслей энергетического сектора страны невозможны без соответствующего роста производства в отраслях энергетического (атомного, электротехнического, нефтегазового, нефтехимического, горношахтного и др.) машиностроения, металлургии и химической промышленности России, а также строительного комплекса. Их необходимое развитие – задача всей экономической политики государства.

ЗАКЛЮЧЕНИЕ

Сегодня мощность всех электростанций России составляет око­ло 212,8 млн. кВт. В последние годы произошли огромные органи­зационные изменения в энергетике. Создана акционерная компа­ния РАО «ЕЭС России», управляемая советом директоров и осуще­ствляющая производство, распределение и экспорт электроэнергии. Это крупнейшее в мире централизованно управляемое энергетиче­ское объединение. Фактически в России сохранилась монополия на производство электроэнергии.

При развитии энергетики огромное значение придается вопро­сам правильного размещения электроэнергетического хозяйства. Важнейшим условием рационального размещения электрических станций является всесторонний учет потребности в электроэнергии всех отраслей народного хозяйства страны и нужд населения, а также каждого экономического района на перспективу.

Одним из принципов размещения электроэнергетики на совре­менном этапе развития рыночного хозяйства является преимущест­венное строительство небольших по мощности тепловых электро­станций, внедрение новых видов топлива, развитие сети дальних высоковольтных электропередач.

Существенная особенность развития и размещения электро­энергетики - широкое строительство теплоэлектроцентралей (ТЭЦ) для теплофикации различных отраслей промышленности и коммунального хозяйства.

Основной тип электростанций в России - тепловые, работающие на органическом топливе (уголь, газ, мазут, сланцы, торф). На их долю приходится около 68% производства электроэнергии.

Основную роль играют мощные (более 2 млн кВт) ГРЭС - госу­дарственные районные электростанции, обеспечивающие потребно­сти экономического района и работающие в энергосистемах.

ГЭС занимает второе место по количеству вырабатываемой электроэнергии (в 2000 г. около 18%). Гидроэлектростанции являют­ся весьма эффективным источником энергии, поскольку использу­ют возобновимые ресурсы, они просты в управлении (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС) и имеют вы­сокий КПД - более 80%. В результате производимая на ГЭС энер­гия - самая дешевая.

Преимущества АЭС состоят в том, что их можно строить в лю­бом районе независимо от его энергетических ресурсов; атомное топливо отличается большим содержанием энергии (в 1 кг основно­го ядерного топлива - урана - содержится энергии столько же, сколько в 2500 т угля). АЭС не дают выбросов в атмосферу в усло­виях безаварийной работы (в отличие от ТЭС), не поглощают ки­слород.

В последние годы в России возрос интерес к использованию альтернативных источников энергии – солнца, ветра, внутреннего тепла Земли, морских приливов.

Разработана программа, согласно которой в первой половине XXI в. должны построить ветровые электростанции - Калмыцкую, Тувинскую, Магаданскую, Приморскую и геотермальные электро­станции - Верхне-Мугимовскую, Океанскую.

В перспективе Россия должна отказаться от строительства но­вых крупных тепловых и гидравлических станций, требующих ог­ромных инвестиций и создающих экологическую напряженность. Предполагается строительство ТЭЦ малой и средней мощности и малых АЭС в удаленных северных и восточных регионах. На Даль­нем Востоке предусматривается развитие гидроэнергетики за счет строительства каскада средних и малых ГЭС. Новые мощные кон­денсационные ГРЭС будут строиться на углях Канско-Ачинского бассейна.

Список используемых источников

    Архангельский В. Электроэнергетика – комплекс общегосударственного значения. – БИКИ, №140, 2003

    Винокуров А.А. Введение в экономическую географию и региональную экономику России. Часть 1. – М., ВЛАДОС-ПРЕСС. 2003

    Гладкий Ю.Н., Доброскок В.А., Семенов С.П. Социально-экономическая география: Учебное пособие. – М., Наука. 2001

    Дронов В.П. Экономическая и социальная география. – И. Проспект. 1996

    Козьева И.А., Кузьбожев Э.Н. Экономическая география и регионалистика: Учебное пособие для вузов. - 2-е изд., перераб. и доп. – Курск. КГТУ. 2004

    Макаров А. Электроэнергетика России: производственные перспективы и хозяйственные отношения. – Общество и экономика, № 7-8, 2003

    Российский статистический ежегодник. – М., 2001

    Скопин А.Ю. Экономическая география России: учебник. – М. ТК Велби. Изд-во Проспект. 2005

    «Экономическая газета» № 3, 2008.

    Экономическая география и регионолистика. / Под ред. Е.В. Вавилова. – М. Гардарики. 2004

    Экономическая география: Учебное пособие. / Под ред. Жлетикова В.П. – Ростов-на-Дону. Феникс. 2003

    Экономическая и социальная география России: Учебник для вузов. / Под ред. проф. А.Т. Хрущева – 2-е изд., стереотип. – М. Дрофа. 2002

  1. http://www. gks .ru/
  2. http://www. slon .ru/

ПРИЛОЕНИЕ 1.

Производство электроэнергии по экономическим районам России 2

Экономические районы

млрд кВт*ч

млрд кВт*ч

млрд кВт*ч

млрд кВт*ч

Россия в целом

Северный

Северо-Западный

Центральный

Волго-Вятский

Центрально-Черноземный

Поволжский

Северо-Кавказский

Уральский

Западно-Сибирский

Восточно-Сибирский

Дальневосточный

Калининградская обл.


Производство и распределение энергии 3

ПРИЛОЖЕНИЕ 2.

ГРЭС мощностью более 2 млн кВт

Экономический район

Субъект Федерации

Мощность, млн кВт

Северо-Западный

Ленинградская обл. (Кириши)

Киришская

Центральный

Костромская обл.(пос. Волгореченск)

Костромская

Мазут, газ

Рязанская обл. (пос. Новомичуринск)

Рязанская

Уголь, мазут

Тверская обл. (Конаково)

Конаковская

Мазут, газ

Северо-Кавказский

Ставропольский край (пос. Солнечнодольск)

Ставропольская

Поволжский

Республика Татарстан (Заинск)

Заинская

Уральский

Свердловская обл. (пос. Рефтинский)

Рефтинская

Челябинская обл. (Троицк)

Троицкая

Оренбургская обл. (пгт. Энергетик)

Ириклинская

Мазут, газ

Западно-Сибирский

Ханты-Мансийский автономный округ (Сургут)

Сургутская ГРЭС-1

Сургутская ГРЭС-2

Восточно-Сибирский

Красноярский край (Назарово)

Назаровская

Красноярский край (Березовское)

Березовская

Дальневосточный

Республика Саха (Нерюнгри)

Нерюнгринская

ПРИЛОЕНИЕ 3.

Размещение основных каскадов ГЭС

Экономический район

Субъект Федерации

Мощность, млн кВт

Восточно-Сибирский (Ангаро-Енисейский каскад)

Республика Хакасия (пос. Майна, на р. Енисее)

Саяно-Шушенская

Красноярский край (Дивногорск, на р. Енисее)

Красноярская

Иркутская обл. (Братск, на р. Ангаре)

Братская

Иркутская обл. (Усть-Илимск, на р. Анаре)

Усть-Илимская

Иркутская обл. (Иркутск, на р. Ангаре)

Иркутская

Красноярский край (Богучаны, на р. Ангаре)

Богучанская

Поволжский (Волжско-Камский каскад, всего включает 13 гидроузлов мощностью 115 млн кВт)

Волгоградская обл. (Волгоград, на р. Волге)

Волжская (Волгоград)

Самарская обл. (Самара, на р. Волге)

Волжская (Самара)

Саратовская обл. (Балаково, на р. Волга)

Саратовская

Республика Чувашия (Новочебоксарск, на р. Волге)

Чебоксарская

Республика Удмуртия (Воткинск, на р. Каме)

Воткинская

ПРИЛОЖЕНИЕ 4.

Атомные электростанции России

Экономический район

Город, субъект Федерации

Тип реактора

Мощность, млн кВт

Северо-Западный

Сосновый бор, Ленинградская обл.

Ленинградская

Центрально-Черноземный

Курчатов, Курская обл.

Поволжский

Балаково, Саратовская обл.

Балаковская

Центральный

Рославль, Смоленская обл.

Смоленская

Удомля, Тверская обл.

Калининская

Центрально-Черноземный

Нововоронеж, Воронежская обл.

Нововоронежская

Северный

Кандалакша, Мурманская обл.

Кольская

Уральский

пос. Заречный (Свердловская обл.)

Белоярская

Дальневосточный

Пос. Билибино, Чукотский автономный округ

Билибинская

Северо-Кавказский

Волгодинск, Ростовская обл.

Волгодонская

Качественные характеристики работы

Максимальный балл

Оценка работы по формальным критериям:

Соблюдение сроков сдачи работы по этапам написания

Внешний вид работы и правильность оформления титульного листа

Наличие правильно оформленного плана (оглавления)

Указание страниц в оглавлении работы и их нумерация в тексте

Наличие в тексте сносок и гиперссылок

Наличие и качество иллюстративного материала, приложений

Правильность оформления списка литературы

Оценка работы по содержанию

Актуальность проблематики

Логическая структура работы и ее отражение в плане, сбалансированность разделов

Качество введения

Соответствие содержания работы заявленной теме, глубина проработки темы

Качество выполнения картосхем, расчетов (практической части курсовой работы)

Соответствие содержания разделов их названию

Логическая связь между разделами

Степень самостоятельности в изложении, умение делать выводы, обобщения

Качество заключения

Использование новейшей литературы, статистических справочников

III .

Наличие ошибок принципиального характера


России электроэнергетика России переживает далеко не лучшие... О. П. Электроэнергетика России . – М.: Рынок ценных бумаг, 2001. – 157с. Дьяков А. Ф. Основные направления развития энергетики России . – М.: ...

Для удовлетворения потребностей в энергии в бытовых целях всего населения земного шара поставки энергии к 2050 г. должны удвоиться. Это главный вывод, который был сделан Всемирным Энергетическим Советом (ВЭС) в сценариях по развитию энергетики до 2050 г. Мир обладает достаточным количеством разведанных энергоресурсов, чтобы удовлетворить потребности населения в течение ближайших 40 с лишним лет (таблица1). Сегодня задачей является получить эти ресурсы и транспортировать их из тех мест, где они добываются, в места, где в них имеет место наибольшая потребность. Второй важный вывод - пока ископаемое топливо будет оставаться крупнейшим источником первичной энергии в ближайшие сорок лет, нельзя лишь удвоить мировые поставки энергии и улучшить доступ к ней, необходимо научиться эффективно управлять выбросами парниковых газов и заниматься вопросом изменения климата. Основным двигателем в работе над этой двойной задачей будут более высокие цены на энергию (рис. 1).
Более высокие цены будут побуждать развитые страны к более высокой эффективности использования энергии и привлекать значительно более высокие капиталовложения в инфраструктуру энергетики. Однако новые высокие уровни государственного и частного инвестирования в исследования, развитие и размещение чистых и более эффективных технологий также жизненно необходимы. Свою роль в этом вопросе должны сыграть государства, создав мировые правила торговли энергией и установив стабильную цену на углерод, которая была бы понятна для рынков и инвесторов. Вовлечение государства в эту и другие области должно поощряться, а более тесное сотрудничество и интеграция внутри и между регионами мира, между государственным и частным секторами остается совершенно необходимым. Частный сектор должен быть вовлечен в этот процесс. Для понимания быстро изменяющихся условий, в которых функционирует энергетический сектор, ВЭС усовершенствовал или создал новые сценарии развития энергетики. Начав в 2000 г., в настоящее время ВЭС сделал шаг вперед, представив перечень действий, связанных с этими сценариями, включая три цели надежной энергетики, ставшие теперь понятными далеко за пределами энергетического сектора как, три «А». Для удовлетворения мировой потребности в энергии будущие поставки энергии должны отвечать следующим трем критериям: наличие доступа и материальной возможности получения современной энергии всеми; наличие энергии, то есть ее устойчивое и безопасное снабжение; приемлемость, то есть соответствие социальным и экологическим требованиям. В сценарии развития энергетики до 2050 г. решено осуществить новый подход, отойдя от строго статистического моделирования к подходу, который должен привести к глубокому проникновению в вопрос будущего энергетики в различных регионах мира и позволить сосредоточиться на политике, призванной гарантировать надежность энергетики. ВЭС демонстрирует четыре возможных подхода к решению задачи осуществления в будущем надежным и безопасным способом. 1. Серьезное участие государства при тесном сотрудничестве и глубокой интеграции государственного и частного секторов как внутри страны, так и на международной арене. 2. Рыночные действия, принимаемые с минимальным участием государства, но высокой степенью сотрудничества и интеграции государственной и частной сферы как внутри страны, так и за рубежом. 3. Государство, глубоко вовлеченное в формирование политики, однако незначительно сотрудничающее с другими странами или имеющее незначительную интеграцию государственного и частного секторов. 4. Низкая доля участия государства и незначительное сотрудничество и интеграция государственного и частного секторов. Эти подходы значительно различаются для разных стран и разных регионов. Первый подход олицетворяет серьезное участие государства при тесном сотрудничестве и глубокой интеграции государственного и частного секторов как внутри страны, так и на международной арене. Второй подход олицетворяет рыночные действия, принимаемые с минимальным участием государства, но высокой степенью сотрудничества и интеграции государственной и частной сферы как внутри страны, так и за рубежом. Третий подход олицетворяет государство, глубоко вовлеченное в формирование политики, однако незначительно сотрудничающее с другими странами или имеющее незначительную интеграцию государственного и частного секторов. Четвертый подход олицетворяет функционирование энергетики с низкой долей участия государства и незначительным сотрудничеством и интеграцией государственного и частного секторов. Среди экспертов ВЭС наблюдалось единое мнение в отношении формы энергетических рынков, которая приведет к 2050 г. к удвоению сегодняшнего уровня энергоснабжения для удовлетворения увеличивающегося спроса. Энергоснабжение и спрос на энергию По крайней мере, к 2050 г. миру потребуется удвоить сегодняшний уровень энергоснабжения для удовлетворения увеличившегося спроса. Большее количество первичной энергии потребуется в 2020 г., хотя некоторые регионы умерят свою потребность благодаря использованию более . Для удвоения энергоснабжения политики должны постоянно быть в курсе всех энергетических альтернатив. Баланс поставок-спроса Нефть Наряду с более значительным сотрудничеством и интеграцией с частным сектором большее вовлечение государства поможет ослабить напряженность на мировых нефтяных рынках. Однако более тесное сотрудничество с частным сектором без действий государства может привести к усилению напряженности на нефтяных рынках, так как более высокий экономический рост приведет к увеличению спроса на энергию и более высоким ценам, а не к более доступной энергии. Серьезное падение нефтяного производства на Ближнем Востоке в связи со сдерживающими факторами технического характера или отсутствием надлежащего планирования развития нефтяной отрасли также приведет к усилению напряженности на энергетических рынках во всем мире. Газ Напряженность на рынках газа усугубится в большинстве регионов, особенно уже в 2020 г. и до конца рассматриваемого периода из-за более высокого спроса, так как газ становится важным источником энергии для сокращения мировых выбросов парниковых газов. Основой российской экономики становится газ, что, возможно, увеличит напряженность на европейском и азиатском рынках. Напряженность на газовых рынках возрастет во всей Америке, начиная с 2020 г., однако снизится с 2035 г., так как за увеличившейся добычей газа последует рост поставок газа. Уголь Поставки угля достаточны для удовлетворения краткосрочного спроса до конца рассматриваемого периода, однако при высоком спросе напряженность возрастает, что является результатом экологического давления, оказываемого государствами. Позднее напряженность возрастает по мере того, как технологии «уголь-жидкость» увеличивают спрос.
Если улавливание или хранение углерода станут реальными, возрастет спрос на уголь, и в результате возникнет напряженность в снабжении-спросе. Атомная энергия Напряженность возрастет на рынках атомной энергии, особенно в Азии или Африке, так как объединенная потребность в более безопасном (без углерода) энергоснабжении приводит к увеличению спроса. Поставки могут быть ограничены из-за недостатка активности государства по прогрессивным стандартизированным проектам и бездействия со стороны международного сообщества в рассмотрении двусторонних задач по размещению отходов и распространению вооружений. Тесное сотрудничество международных государственных и промышленных игроков совершенно необходимо для развития сектора атомной энергетики в развивающемся мире. Возобновляемые источники Энергия из возобновляемых источников будет оказывать большое влияние на рынки в течение рассматриваемого периода, но не будет доминировать ни на каком рынке. По мере роста ожиданий потребителей в отношении возобновляемых источников энергии напряженность поставок-спроса возрастет, так как спрос превысит поставки. Нетрадиционные виды энергии Использование нетрадиционных видов энергии сокращается в Азии, Латинской Америке и Африке. Сначала сократится в Азии, где уже происходит прогресс, позднее в Африке - из-за отсутствия эффективного участия государства. Какие же перспективы ожидают электроэнергетику СНГ в этой ситуации? Последнее десятилетие электроэнергетическая отрасль как в большинстве промышленно развитых стран мира, так и государств-участников СНГ претерпевает сложные глобальные преобразования, которые носят универсальный характер. Либерализация отношений в электроэнергетике и реформирование отрасли в разных странах осуществляются различными темпами в зависимости от особенностей национальных экономик, однако имеют одну общую цель формирование рыночных отношений между экономическими субъектами. При этом особое внимание уделяется вопросам обеспечения безопасности функционирования объединений энергосистем, неразрывно связанным с энергетической безопасностью государств (рис. 2).
Энергетическая безопасность трактуется как защищенность граждан и государства в целом от угроз дефицита всех видов энергии и энергоресурсов из-за воздействия негативных природных, техногенных, управленческих, социально-экономических, внутри и внешнеполитических факторов. Вопросы повышения международной энергетической безопасности находились в центре внимания саммита «большой восьмерки», прошедшего в СанктПетербурге в июле 2006 г. В итоговом документе «Глобальная энергетическая безопасность», подписанном главами государств «большой восьмерки», уделено внимание и перспективам развития электроэнергетики. В разделе II документа «Улучшение инвестиционного климата в энергетическом секторе», в частности, говорится: «Мы будем принимать меры как на национальном, так и на международном уровне, способствующие привлечению инвестиций во все звенья глобальной производственно-сбытовой энергетической цепи в целях: развития эффективных генерирующих мощностей в электроэнергетике; расширения и повышения эффективности, безопасности и надежности электропередающих мощностей и энергосетей, а также возможности их соединения в единую сеть с системами других государств, в том числе, в развивающихся странах, когда это целесообразно. Мы считаем необходимым облегчить приток капитала в производство электроэнергии, в том числе для строительства новых, более эффективных, и модернизации существующих электростанций, позволяющих шире использовать возобновляемые источники энергии.
Также важно сооружение линий электропередачи, развитие межрегиональной энергетической инфраструктуры и облегчение обмена электроэнергией, в том числе в рамках трансграничных и транзитных схем. Мы выступаем за формирование конкурентных энергетических рынков, межрегиональной энергетической инфраструктуры и обмен электроэнергией». В этом контексте развитие сотрудничества в электроэнергетике между Европейским Союзом и СНГ объективно укрепляет международную энергетическую безопасность всех стран, вовлеченных в этот процесс. Основными направлениями сотрудничества по повышению безопасности в электроэнергетической отрасли являются: – создание объединенных электроэнергетических систем ЕС и СНГ, включающих национальные и региональные энергосистемы стран, обеспечивающих их совместную работу; – процессы либерализации в электроэнергетике и формирование межгосударственных электроэнергетических рынков с целью создания единого рыночного пространства в электроэнергетике, базирующегося на принципах равноправия государств, добросовестной конкуренции и взаимовыгодной торговле электроэнергией. Существующая ситуация

Электроэнергетические системы В настоящее время на Евразийском континенте сформированы следующие транснациональные электроэнергетические системы.
В Европе Энергообъединение UCTE было учреждено в 1951 г. и включает энергосистемы Австрии, Бельгии, Болгарии, Боснии и Герцеговины, Венгрии, Германии, Греции, Дании (ассоциированный член), Испании, Италии, Люксембурга, Македонии, Нидерландов, Польши, Португалии, Румынии, Сербии и Черногории, Словацкой Республики, Словении, Франции, Хорватии, Чешской Республики, Швейцарии. Энергообъединение NORDEL включает энергосистемы Норвегии, Швеции, Финляндии, Дании и Исландии. Общая установленная мощность европейской энергосистемы 550 ГВт (рис. 3). В СНГ Объединение энергосистем государств-участников СНГ, с которым параллельно работает объединенная энергосистема стран Балтии, общей установленной мощностью более 340 ГВт (рис. 4).

Электроэнергетические рынки На основе объединенных энергосистем идет процесс формирования электроэнергетических рынков. В Европе В 1996 г. с принятием Директивы Европейского Совета и Европейского Парламента началось формирование объединенного западноевропейского электроэнергетического рынка. Уже в 2004 г. основные промышленные потребители получили право свободного выбора поставщика электроэнергии. На 2007 г. было запланировано завершить формирование полностью либерализированного электроэнергетического рынка (рис. 5).
В СНГ Страны СНГ находятся на различных стадиях создания рыночных условий, и им еще предстоит пройти значительный путь реформирования. Сближению этих процессов должны способствовать реализация Концепции формирования общего электроэнергетического рынка государств-участников СНГ, утвержденной Решением Совета глав правительств СНГ от 25 ноября 2005 г., и межправительственного Соглашения о формировании общего электроэнергетического рынка государств-участников СНГ от 25 мая 2007 г. Перспективы

Электроэнергетические системы В 2002 г. Электроэнергетический Совет СНГ и Европейский электроэнергетический союз «ЕВРЭЛЕКТРИК» начали изучать вопрос организации параллельной работы объединения энергосистем стран СНГ и Балтии с объединением энергосистем европейских стран. Положительное решение этой задачи позволит сформировать трансконтинентальное энергообъединение общей установленной мощностью почти 900 ГВт, способное обеспечивать электроэнергией около 700 миллионов потребителей (рис. 6).
В настоящее время разрабатывается техникоэкономическое обоснование такого синхронного объединения энергосистем, которое должно завершиться в 2008 г. В ТЭО будут определены необходимые требования к сторонам, составлен перечень мероприятий, необходимых для объединения, и оценены связанные с этим затраты. Опыт создания такого трансконтинентального объединения существует. К концу 80-х годов создалось уникальное для своего времени межгосударственное энергообъединение стран-членов СЭВ «Мир» с суммарной установленной мощностью более 400 ГВт, которое охватывало громадную территорию от УланБатора до Берлина. Электроэнергетические рынки Проработка вопросов организации параллельной работы энергосистем СНГ и Европы сопровождается разработкой механизмов создания совместимых рыночных условий в электроэнергетическом секторе двух регионов. С этой целью специалистами Электроэнергетического Совета СНГ и отраслевого европейского Электроэнергетического союза - «ЕВРЭЛЕКТРИК» - разработаны Дорожные карты «Путь к созданию совместимых электроэнергетических рынков в странах ЕС и СНГ» и «Ключевые экологические вопросы объединения электроэнергетических рынков ЕС и СНГ». В Дорожной карте предусмотрено несколько фаз развития. Фаза 0: нынешняя ситуация. Фаза 1: подготовка условий к ограниченному открытию оптового рынка. Фаза 2: подготовка условий для полного открытия рынка на оптовом уровне. Фаза 3: обеспечение условий для полного открытия рынка, также на розничном уровне. Дорожные карты получили широкую поддержку участников 2-го совместного семинара «ЕВРЭЛЕКТРИК» ЭЭС СНГ, который состоялся в Москве в ноябре 2005 г. и в котором приняли участие более 160 высокопоставленных представителей политических кругов и электроэнергетического сектора Европейского Союза и Содружества Независимых Государств. Участники Семинара выразили свою поддержку идее создания открытого, либерализованного, отвечающего экологическим требованиям электроэнергетического рынка. Еще раз были подчеркнуты три фундаментальных составляющих - сопоставимость рыночных условий, гармонизация экологических законодательств и совместимость технологических требований в объединяемых энергосистемах, которые дополняют друг друга и образуют единое целое. Фазы Дорожной карты по ключевым экологическим вопросам: Фаза 0: текущая ситуация. Фаза 1: подготовка к открытию ограниченного оптового рынка. Фазы 2 и 3: подготовка к полному открытию рынка. Участники семинара особо отметили, что принципы, изложенные в Дорожных картах и согласованные «ЕВРЭЛЕКТРИК» и Электроэнергетическим Советом СНГ, целесообразно одобрить на политическом уровне.
Электроэнергетика является одной из ключевых составляющих экономической интеграции стран как на пространстве Европейского Союза, так и СНГ. Развитие сотрудничества как внутри, так и между этими двумя регионами направлено на: – повышение эффективности и надежности работы электроэнергетических систем, оказание взаимопомощи в аварийных ситуациях; – возможность более эффективного использования генерирующих мощностей и первичных энергоресурсов; – диверсификацию источников энергии на основе общего электроэнергетического рынка; – рост международной энергетической и экономической безопасности, а также политической стабильности для всех стран, вовлеченных в этот процесс. В электроэнергетической отрасли большинства стран СНГ имеется еще целый ряд серьезных проблем. Одна из основных проблем связана с решением задачи широкого привлечения инвестиций в электроэнергетику с целью ускоренной модернизации генерирующих мощностей, в составе которых продолжает быстро увеличиваться доля физически и морально устаревшего оборудования. Завершая краткий обзор тех процессов, которые идут в электроэнергетике, можно с удовлетворением отметить, что электроэнергетическая отрасль в странах СНГ выходит на новый, позитивный этап своего развития. В последние годы в странах СНГ стабильно растет производство и потребление электроэнергии, идет обновление основных фондов, вводятся новые генерирующие мощности (рис. 7, 8).

На современном этапе остро стоит проблема модернизации энергетического хозяйства. Устаревшие технологии сжигания угля, мазута, газа, высокий уровень сработанности оборудования приводят к превышению затрат топлива и огромным выбросам вредных веществ в атмосферу. Основная доля электроэнергии используется для потребности промышленности, где очень большие потери электроэнергии в результате бесхозяйственности и применения неэффективных технологий производства.

Проблема! Главной причиной, ограничивающей развитие энергетики, является экологическая. За 2012 год выбросы загрязняющих атмосферу веществ предприятиями по производству и распределению электроэнергии составили 592,1 тыс. тонн, или 39,1 % всех выбросов стационарными источниками загрязнения. Предложите пути решения этой проблемы.

В 2013 году вредные выбросы предприятий электроэнергетики уменьшились на 13,6 % за счет неработающей Углегорской ТЭС, однако остаются самыми значительными среди всех видов промышленной деятельности – 384,1 тыс. тонн, или 35,8 % областного объема.

Таблица 1. Удельный выброс загрязняющих веществ от ТЭС Нашего

края

Учитывая среднее значение удельного выброса от ТЭС, а также тот факт, что население области потребляет 7859,4 млн. кВт- год электроэнергии, можно определить, что при выработке этого количества электроэнергии на ТЭС в атмосферный воздух поступает 141,5 тыс. т загрязняющих веществ в

год, таких как оксид углерода, азота, диоксид серы, пыль неорганическая, тяжелые металлы, парниковые газы (табл. 1).

Для уменьшения выбросов вредных веществ в атмосферу и эффективного использования энергии как приоритетного направления энергетической политики


региона необходимо: увеличивать объемы использования природного газа на ТЭС за счет уменьшения его затрат в металлургии и других отраслях хозяйства; повышать эффективность использования топлива разных видов; внедрять эффективные и экономически рентабельные очистительные устройства и их системы; совершенствовать структуру промышленности; внедрять энергосберегающие технологии, оборудование и бытовые приборы.

ПОВТОРИМ ГЛАВНОЕ

Электроэнергетика – базовая отрасль экономики, которая вырабатывает, передает и трансформирует электроэнергию.

Почти вся электроэнергия Нашего края вырабатывается на тепловых электростанциях (ТЭС). Электростанции соединяются между собой ЛЭП и образуют энергосистемы.


Среди тепловых электростанций выделяют конденсационные и

теплоэлектроцентрали (ТЭЦ) .

Большие ТЭС размещают в районах добычи топлива, вблизи рек, которые дают воду для охлаждения. Передавать электроэнергию по линиям электропередач гораздо дешевле, чем перевозить топливо.

Наш край учится использовать альтернативные источники энергии. Ветер и солнечную энергию – для выработки электричества. Биомассу: древесные опилки, солому – для отопления.

Среди важнейших причин, ограничивающих развитие энергетики, относится экологическая .

ВОПРОСЫ И ЗАДАНИЯ 1. Что входит в отраслевой состав электроэнергетики? 2. Каково значение электроэнергетики в хозяйстве региона? 3. Что такое ТЭЦ, ТЭС? В чем их отличие? 4. Почему в Донбассе были построены только тепловые электростанции? 5. Какие нетрадиционные виды энергии используются в нашем регионе? 6. Что такое энергосистема? В чем ее особенности? 7. Каковы проблемы и перспективы развития электроэнергетики нашего края? 8. Подготовьте учебный проект «Нетрадиционные виды энергии» 9. Определите, сколько стоит 1 кВт ч электроэнергии. Посмотрите по счетчику, какое количество электроэнергии ваша семья потребляет в сутки. Сколько это стоит? Проведите аналогичные расчеты за месяц, год. Определите, какие домашние электроприборы потребляют наибольшее количество электроэнергии. Как программа энергосбережения может быть реализована в вашем доме? Разработайте «домашние мероприятия» по энергосбережению.

Развитие энергетики мира в начале XXI в. будет определяться комплексным воздействием многих экономических, природных, научно-технических и политических факторов. Оценка долгосрочного роста потребления энергии, основанная на предполагаемых темпах развития мировой энергетики, приводит к выводу, что среднегодовой прирост до 2030-2050 гг. составит, вероятно, 2-3%. В развивающихся странах он будет значительно большим. Учитывая прогнозируемый рост населения к 2025 г. до 8,5 млрд. чел., из которых 80% будут проживать в развивающихся странах, можно ожидать, что именно эти страны будут играть определяющую роль в мировом потреблении энергии. Это вызовет резкое увеличение ее производства. Увеличение производства электроэнергии повлечет за собой сильное загрязнение природной среды. Роль природного газа в энергоснабжении в перспективе будет возрастать, учитывая обширные запасы этого сырья, а также экологическую чистоту этого вида топлива.

Переход от нефти к газу — это третья энергетическая революция (первая — переход от дров к углю, вторая — от угля к нефти). Нефть в настоящее время стала замыкающим ресурсом в энергобалансе мира. Цены на нефть будут определять темпы перестройки структуры мирового энергобаланса. Полагают, что потребление в мире увеличится к 2030 г. почти до 8 млрд. тонн, так как все ТЭС угольные переоборудовать на нефть или газ очень дорого.

На Международной конференции по использованию энергетических ресурсов ( , 1989 г.) было достигнуто эффективное решение проблемы ядерной энергетики, увеличившее число сторонников ее развития во многих .

Напротив, в (провинция Онтарио) и объявлен мораторий на строительство новых АЭС. Серьезную озабоченность вызывают АЭС в Восточной Европе, хотя действующие в , Словакии АЭС относятся по своим показателям к лучшим в мире. Решаются проблемы безотходного использования природного урана как одноразового топлива, а также переработки и уничтожения радиоактивных отходов.

По-разному относятся во многих странах к использованию гидроэнергетических ресурсов. Крупные ГЭС планирует только Китай. До 2000 г. на реках Китая проектируется 60 крупных ГЭС суммарной мощностью 70 ГВт.

Наиболее перспективным направлением в производстве энергии предполагают использование солнечной энергии (фотоэлектричеекое преобразование) и температурного градиента океана для выработки электроэнергии, энергии ветра, геотермальной энергии, энергии горных пород и магмы, приливной энергии, топливных элементов, переработки древесины в жидкое топливо, переработки городских отходов, применение биогаза, получаемого при переработке отходов промышленности и сельского хозяйства. Лидируют в разработке этих технологий развитые страны, в первую очередь,

Электроэнергетика, как и другие отрасли промышленности, имеет свои проблемы и перспективы развития.

В настоящее время электроэнергетика России находится в кризисе. Понятие "энергетический кризис" можно определить, как напряженное состояние, сложившееся в результате несовпадения между потребностями современного общества в энергии и запасами энергоресурсов, в том числе вследствие нерациональной структуры их потребления.

В России можно на данный момент выделить 10 групп наиболее острых проблем:

  • 1). Наличие большой доли физически и морально устаревшего оборудования. Увеличение доли физически изношенных фондов приводит к росту аварийности, частым ремонтам и снижению надежности энергоснабжения, что усугубляется чрезмерной загрузкой производственных мощностей и недостаточными резервами. На сегодняшний день износ оборудования одна из важнейших проблем электроэнергетики. На российских электростанциях он очень велик. Наличие большой доли физически и морально устаревшего оборудования усложняет ситуацию с обеспечением безопасности работы электростанций. Около одной пятой производственных фондов в электроэнергетике близки или превысили проектные сроки эксплуатации и требуют реконструкции или замены. Обновление оборудования ведется недопустимо низкими темпами и в явно недостаточном объеме (таблица).
  • 2). Основной проблемой энергетики является также то, что наряду с черной и цветной металлургией энергетика оказывает мощное негативное влияние на окружающую среду. Предприятия энергетики формируют 25 % всех выбросов промышленности.

В 2000 году объемы выбросов вредных веществ в атмосферу составляли 3,9 тонн в том числе выбросы от ТЭС - 3, 5 млн тонн. На диоксид серы приходится до 40% общего объема выбросов, твердых веществ - 30%, оксидов азота - 24 %. То есть ТЭС являются главной причиной формирования кислотных остатков.

Крупнейшими загрязнителями атмосферы являются Рафтинская ГРЭС (г. Асбест, Свердловская область) - 360 тыс. тонн, Новочеркасская (г. Новочеркасск, Ростовская обл.) - 122 тыс. тонн, Троицкая (г. Троицк-5, Челябинская обл.) - 103 тыс. тонн, Верхнетагильская (Свердловская обл.) - 72 тыс. тонн.

Энергетика является и крупнейшим потребителем пресной и морской воды, расходуемой на охлаждение агрегатов и используемой в качестве носителя тепла. На долю отрасли приходится 77% общего объема свежей воды, использованной промышленностью России.

Объем сточных вод, сброшенных предприятиями отрасли в поверхностные водоёмы, в 2000 г. Составил 26,8 млрд куб. м. (на 5,3% больше чем в 1999г.). Крупнейшими источниками загрязнения водных объектов являются ТЭЦ, в то время как ГРЭС - главных источников загрязнения воздуха. Это ТЭЦ-2 (г. Владивосток) - 258 млн куб. м, Безымянская ТЭЦ (Самарская область) - 92 млн куб. м, ТЭЦ-1 (г. Ярославль) - 65 млн куб. м, ТЭЦ-10 (г. Ангарск, Иркутская обл.) - 54 млн куб. м, ТЭЦ-15 и Первомайская ТЭЦ (Санкт-Петербург) - суммарно 81 млн куб. м.

В энергетике образуется и большое количество токсичных отходов (шлаки, зола). В 2000 г. объем токсичных отходов составил 8,2 млн тонн.

Помимо загрязнения воздуха и воды, предприятия энергетики загрязняют почвы, а гидроэлектростанции оказывают сильнейшее воздействие на режим рек, речные и пойменные экосистемы.

  • 3). Жесткая тарифная политика. В электроэнергетике поставлены вопросы об экономичном использовании энергии и о тарифах на неё. Можно говорить о необходимости экономии вырабатываемой электроэнергии. Ведь в настоящее время в стране расходуется на единицу продукции в 3 раза больше энергии, чем в США. В этой области предстоит большая работа. В свою очередь тарифы на энергию растут опережающими темпами. Действующие в России тарифы и их соотношение не соответствуют мировой и европейской практике. Существующая тарифная политика привела к убыточной деятельности и низкой рентабельности ряда АО-энерго.
  • 4). Ряд районов уже испытывает трудности с обеспечением электроэнергией. Наряду с Центральным районом, дефицит электроэнергии отмечается в Центрально-Черноземном, Волго-Вятском и Северо-Западном экономических районах. Например, в Центральном экономическом районе в 1995 году было произведено огромное количество электроэнергии - 19% от общероссийских показателей (154,7 млрд. кВт), но она вся расходуется внутри региона.
  • 5). Сокращается прирост мощностей. Это объясняется некачественным топливом, изношенностью оборудования, проведением работ по повышению безопасности блоков и рядом других причин. Неполное использование мощностей ГЭС происходит из-за малой водности рек. В настоящее время 16 % мощностей электростанций России уже отработали свой ресурс. Из них на ГЭС приходится 65%, на ТЭС - 35 %. Ввод новых мощностей сократился до 0,6 - 1,5 млн кВт в год (1990-2000гг.) по сравнению с 6-7 млн кВт в год (1976-1985гг.).
  • 6). Возникшее противодействие общественности и местных органов власти размещению объектов электроэнергетики в связи с их крайне низкой экологической безопасностью. В частности после Чернобыльской катастрофы были прекращены многие изыскательные работы, строительство и расширение АЭС на 39 площадках общей проектной мощностью 109 млн кВт.
  • 7). Неплатежи, как со стороны потребителей электроэнергии, так и со стороны энергокомпаний за топливо, оборудование и др.;
  • 8). Недостаток инвестиций, связанный как с проводимой тарифной политикой, так и с финансовой "непрозрачностью" отрасли. Крупнейшие западные стратегические инвесторы готовы вкладывать средства в российскую электроэнергетику лишь при условии роста тарифов, чтобы обеспечить возвратность вложений.
  • 9). Перебои в энергоснабжении отдельных регионов, в частности Приморья;
  • 10). Невысокий коэффициент полезного использования энергоресурсов. Это значит, что 57% энергоресурсов ежегодно теряется. Большая часть потерь происходит на электростанциях, в двигателях, непосредственно использующих горючее, а также в технологических процессах, где топливо служит сырьем. При транспортировке топлива также происходят большие потери энергоресурсов.

Что же касается перспектив развития электроэнергетики в России, то, несмотря на все свои проблемы, электроэнергетика имеет достаточные перспективы.

Например, работа ТЭС требует добычи огромного объема невозобновляемых ресурсов, имеет достаточно низкий КПД, ведет к загрязнению окружающей среды. В России тепловые электростанции работают на мазуте, газе, угле. Однако на данном этапе привлекательными являются региональные энергокомпании с высоким удельным весом газа в структуре топливного баланса, как более эффективного и экологически выгодного топлива. В частности можно отметить, что электростанции, работающие на газе, выбрасывают в атмосферу на 40% меньше углекислого газа. Кроме того газовые станции имеют более высокий коэффициент использования установленной мощности по сравнению с мазутными и угольными станциями, отличаются более стабильным теплоснабжением и не несут затрат по хранению топлива. Работающие на газе станции находятся в лучшем состоянии, чем угольные и мазутные, так как они относительно недавно введены в эксплуатацию. А также цены на газ регулируются государством. Таким образом, становится более перспективным строительство тепловых электростанций, топливом для которых является газ. Также на ТЭС перспективно использование пылеочистительного оборудования с максимально возможным КПД, при этом образующуюся золу использовать в качестве сырья при производстве строительных материалов.

Строительство ГЭС в свою очередь требует затопления большого количества плодородных земель, или в результате давления воды на земную кору ГЭС может вызвать землетрясение. Кроме этого сокращаются рыбные запасы в реках. Перспективным становится строительство сравнительно небольших ГЭС, не требующих серьезных капиталовложений, работающих в автоматическом режиме преимущественно в горной местности, а также - обваловка водохранилищ для освобождения плодородных земель.

Что же касается ядерной энергетики, то строительство АЭС имеет определенный риск, из-за того, что трудно предсказать масштабы последствий при осложнении работы энергоблоков АЭС или при форс-мажорных обстоятельствах. Также не решена проблема утилизации твердых радиоактивных отходов, несовершенна и система защиты. Ядерная электроэнергетика имеет наибольшие перспективы в развитии термоядерных электростанций. Это практически вечный источник энергии, почти безвредный для окружающей среды. Развитие атомной электроэнергетики в ближайшей перспективе будет основано на безопасной эксплуатации существующих мощностей, с постепенной заменой блоков первого поколения наиболее совершенными российскими реакторами. Наибольший ожидаемый рост мощностей произойдет за счет завершения строительства уже начатых станций.

Существует 2 противоположные концепции дальнейшего существования ядерной электроэнергетики в стране.

  • 1. Официальная, которая поддерживается Президентом и Правительством. Основываясь на положительных чертах АЭС, они предлагают программу широкого развития электроэнергетики России.
  • 2. Экологическая, во главе которой стоит академик Яблоков. Сторонники этой концепции полностью отвергают возможность нового строительства атомных электростанций, как по экологическим, так и по экономическим соображениям.

Есть и промежуточные концепции. Например ряд специалистов считает, что нужно ввести мораторий на строительство атомных электростанций опираясь на недостатки АЭС. Другие же предполагают, что остановка развития ядерной электроэнергетики может привести к тому, что Россия полностью потеряет свой научно-технический и промышленный потенциал в ядерной энергетике.

Исходя из всех негативных влияний традиционной энергетики на окружающую среду, большое внимание уделяется изучению возможностей использования нетрадиционных, альтернативных источников энергии. Практическое применение уже получили энергия приливов и отливов и внутреннее тепло Земли. Ветровые энергоустановки имеются в жилых поселках Крайнего Севера. Ведутся работы по изучению возможности использования биомассы в качестве источника энергии. В будущем, возможно, огромную роль будет играть гелиоэнергетика.

Опыт развития отечественной электроэнергетики выработал следующие принципы размещения и функционирования предприятий этой отрасли промышленности:

  • 1. концентрация производства электроэнергии на крупных районных электростанциях, использующих относительно дешевое топливо и энергоресурсы;
  • 2. комбинирование производства электроэнергии и тепла для теплофикации населенных пунктов, прежде всего городов;
  • 3. широкое освоение гидроресурсов с учетом комплексного решения задач электроэнергетики, транспорта, водоснабжения;
  • 4. необходимость развития атомной энергетики, особенно в районах с напряженным топливно-энергетическим балансом, с учетом безопасности использования АЭС;
  • 5. создание энергосистем, формирующих единую высоковольтную сеть страны.

В настоящий момент России нужна новая энергетическая политика, которая была бы достаточно гибкой и предусматривала все особенности данной отрасли, в том числе и особенности размещения. В качестве основных задач развития российской энергетики можно выделить следующие:

ь Снижение энергоемкости производства.

ь Сохранение целостности и развитие Единой энергетической системы России, ее интеграция с другими энергообъединениями на Евразийском континенте;

ь Повышение коэффициента используемой мощности электростанций, повышение эффективности функционирования и обеспечение устойчивого развития электроэнергетики на базе современных технологий;

ь Полный переход к рыночным отношениям, освобождение цен на энергоносители, полный переход на мировые цены.

ь Скорейшее обновление парка электростанций.

ь Приведение экологических параметров электростанций к уровню мировых стандартов, снижение вредного воздействия на окружающую среду

Исходя из данных задач создана "Генеральная схема размещения объектов электроэнергетики до 2020 года", одобренная Правительством РФ. (диаграмма 2)

Приоритетами Генеральной схемы в рамках установленных ориентиров долгосрочной государственной политики в сфере электроэнергетики являются:

ь опережающее развитие электроэнергетической отрасли, создание в ней экономически обоснованной структуры генерирующих мощностей и электросетевых объектов для надежного обеспечения потребителей страны электрической и тепловой энергией;

ь оптимизация топливного баланса электроэнергетики за счет максимально возможного использования потенциала развития атомных, гидравлических, а также использующих уголь тепловых электростанций и уменьшения в топливном балансе отрасли использования газа;

ь создание сетевой инфраструктуры, развивающейся опережающими темпами по сравнению с развитием электростанций и обеспечивающей полноценное участие энергокомпаний и потребителей в функционировании рынка электрической энергии и мощности, усиление межсистемных связей, гарантирующих надежность взаимных поставок электрической энергии и мощности между регионами России, а также возможность экспорта электрической энергии;

ь минимизация удельных расходов топлива на производство электрической и тепловой энергии путем внедрения современного высокоэкономичного оборудования, работающего на твердом и газообразном топливе;

ь снижение техногенного воздействия электростанций на окружающую среду путем эффективного использования топливно-энергетических ресурсов, оптимизации производственной структуры отрасли, технологического перевооружения и вывода из эксплуатации устаревшего оборудования, увеличения объема природоохранных мероприятий на электростанциях, реализации программ по развитию и использованию возобновляемых источников энергии.

По результатам мониторинга в Правительство Российской Федерации ежегодно представляется доклад о ходе реализации Генеральной схемы. Через несколько лет будет видно, насколько она эффективна и насколько реализуются её положения по использованию всех перспектив развития российской энергетики.

В перспективе Россия должна отказаться от строительства новых крупных тепловых и гидравлических станций, требующих огромных инвестиций и создающих экологическую напряженность. Предполагается строительство ТЭЦ малой и средней мощности и малых АЭС в удаленных северных и восточных регионах. На Дальнем Востоке предусматривается развитие гидроэнергетики за счет строительства каскада средних и малых ГЭС. Новые ТЭЦ будут строиться на газе, и только в Канско-Ачинском бассейне предполагается строительство мощных конденсационных ГРЭС из-за дешевой, открытой добычи угля. Имеет перспективы использование геотермальной энергии. Районами, наиболее перспективными для широкого использования термальных вод являются Западная и Восточная Сибирь, а также Камчатка, Чукотка, Сахалин. В перспективе масштабы использования термальных вод будут неуклонно возрастать. Проводятся исследования по вовлечению неисчерпаемых источников энергии, таких как энергия Солнца, ветра, приливов и др., в хозяйственный оборот, что даст возможность обеспечить в стране экономию энергоресурсов, особенно минерального топлива.

Новое на сайте

>

Самое популярное