Домой Кредитные учереждения Влияние морозного пучения грунта на фундамент — примеры.

Влияние морозного пучения грунта на фундамент — примеры.

Величина заглубления фундаментов напрямую зависит от глубины промерзания грунта, а значит от вида грунтов, величины их морозного пучения и на участке.

В статье об площадки под строительство дома мы уже касались вопроса о том, что на рынке есть недобросовестные компании, ведущие строительные работы и предлагающие своим заказчикам уже готовые проекты деревянных домов с фундаментами, не проводя при этом предварительных геологических изысканий. От услуг такого застройщика стоит отказаться уже потому, что в зависимости от региона, глубина промерзания грунта по СНиП может разниться, причем довольно существенно.

Ведь глубина, на которую роются траншеи для заливки фундамента или величина заглубления винтовых свай на юге страны намного меньше, чем в Москве и Московской области. Где, в свою очередь, глубина промерзания так же меньше, чем на севере Карелии или в Мурманской области. К тому же Расчетная глубина промерзания грунта должна дополнительно корректироваться с учетом теплотехнического расчета в случае применения постоянной теплозащиты основания.

Далее в этой статье приведены графические и табличные выдержки из нормативных источников как СССР (впрочем, с тех пор ничего в нашем климате не изменилось), так и современной России с зонами сезонного промерзания грунтов, их глубинами, и параметрами на это влияющими.

При расчете фундаментов в Российской Федерации следует руководствоваться указаниями основного документа: СНиП 2.02.01-83* «Основания зданий и сооружений», пособия по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83), а так же СНиП 23-01-99* «Строительная климатология», и еще несколькими руководящими документами. Согласно им,глубина заложения фундамента должна приниматься с учетом:

  • назначения и конструктивных особенностей проектируемого сооружения, нагрузок и воздействий на его фундаменты;
  • глубины заложения фундаментов примыкающих сооружений, а также глубины прокладки инженерных коммуникаций;
  • существующего и проектируемого рельефа застраиваемой территории;
  • инженерно-геологических условий площадки строительства (физико-механических свойств грунтов, характера напластований, наличия слоев, склонных к скольжению, карманов выветривания, карстовых полостей и пр.);
  • гидрогеологических условий площадки и возможных их изменений в процессе строительства и эксплуатации сооружения;
  • сезонных глубин промерзания грунтов .

Расчет глубины промерзания грунта по СНиП

Согласно п.2.124 (2.27) пособия по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83) она рассчитывается очень просто – h=√М*k. То есть квадратный корень из суммы абсолютных значений среднемесячных отрицательных температур за зиму в конкретно взятом районе, умноженный на коэффициент, равный:

  • для суглинков и глин – 0,23 ;
  • для супесей, песков мелких и пылеватых – 0,28 ;
  • для песков гравелистых, крупных и средней крупности – 0,30 ;
  • для крупнообломочных грунтов – 0,34 .

Пример расчета глубины промерзания

Согласно для Вологды таблица среднемесячных температур за год выглядит так:

Месяц Январь Февраль Март Апрель Май Июнь Июль Август Сентябрь Октябрь Ноябрь Декабрь
Температура -11,6 -10,7 -5,4 2,4 10,0 15,0 17,2 15,3 9,4 3,2 -2,9 -7,9

Применяя формулу h=√М*k, суммируем все абсолютные значения месяцев с отрицательными температурами и получаем число «М» равное 38,5 . Извлекаем квадратный корень из этого числа и получаем 6,20 . Далее умножаем 6,20 на коэффициент k=0,23 (для суглинков и глин) и в итоге имеем 1,43 .

h=√38,5 * 0,23 => h=1.43

То есть нормативная глубина промерзания грунта по СНиП в Вологде, в условиях суглинков и глин, составляет 1 метр 43 сантиметра . Соответственно, например для песков крупных, она составит 6,20*0,3=1,86 м .

Дело в том, что этот коэффициент возрастает по причине укрупнения частиц грунта – ведь чем они крупнее, тем больше расстояние между ними и тем глубже промерзает грунт в итоге. А для глинистых грунтов это еще влияет на их пучинистость. Чем больше воды накапливается между частицами, тем выше морозное пучение таких грунтов, ведь вода расширяется при замерзании.

Морозное пучение грунта и фундамент

Морозное пучение грунта - это свойство, определяющее деформацию грунта в процессе замерзания – оттаивания. Тем больше вспучиванию подвержен грунт при промерзании, чем больше воды в нем накапливается. Говоря научным языком, пучинистый грунт – это дисперсный грунт, который при переходе из талого в мерзлое состояние увеличивается в объеме вследствие образования кристаллов льда и имеет относительную деформацию морозного пучения.

Сильнее остальных морозному пучению подвержены пылеватые и глинистые грунты, наиболее проводящие и удерживающие влагу (объем грунта может увеличиваться до 10%, то есть при глубине промерзания 1,5 м – на 15 см). Песчаные грунты подвержены пучению гораздо меньше, а каменистые и скальные – практически не подвержены.

Ну и само собой получается, что чем больше в году месяцев с отрицательными температурами, тем глубже будет промерзать грунт.

Так, для справки, выглядит конечная сводная таблица глубин промерзания грунтов по СНиП для ряда городов.

Город М √М Глубина промерзания грунта по СНиП, м
суглинки и глины песок мелкий, супесь песок крупный, гравелистый
Архангельск 46,1 6,79 1,56 1,90 2,04
Вологда 38,5 6,20 1,43 1,74 1,86
Екатеринбург 46,3 6,80 1,57 1,91 2,04
Казань 38,9 6,24 1,43 1,75 1,87
Курск 21,3 4,62 1,06 1,29 1,38
Москва 22,9 4,79 1,10 1,34 1,44
Нижний Новгород 39,6 6,29 1,45 1,76 1,89
Новосибирск 63,3 7,96 1,83 2,23 2,39
Орел 23,0 4,80 1,10 1,34 1,44
Пермь 47,6 6,90 1,59 1,93 2,07
Псков 17,9 4,23 0,97 1,18 1,27
Ростов-на-Дону 8,2 2,86 0,66 0,80 0,86
Рязань 34,9 5,91 1,36 1,65 1,77
Самара 44,9 6,70 1,54 1,88 2,01
Санкт-Петербург 18,3 4,28 0,98 1,20 1,28
Саратов 26,6 5,16 1,19 1,44 1,55
Сургут 93,3 9,66 2,22 2,70 2,90
Тюмень 56,5 7,52 1,73 2,10 2,25
Челябинск 56,6 7,52 1,73 2,11 2,26
Ярославль 38,5 6,20 1,43 1,74 1,86

Причем глубина промерзания грунтов по СНиП зависит не только от типа самих грунтов на строительной площадке, но косвенно еще и от толщины снежного покрова.

Поэтому когда вы расчищаете зимой снег на своём участке вы, сами того не подозревая, формируете в одном месте сугробы, а около дома – очищенную поверхность. Тем самым вы своими же руками создаёте неравномерность промерзания грунта на своем участке. А это может неблагоприятным образом сказаться на вашего деревянного дома. Поэтому, дополнительно ко всему, неплохо устроить по периметру дома посадки из кустарника, что так же будет формировать снежный вал над фундаментом и способствовать меньшей глубине промерзания грунта, вплоть до 10-15%.

2013 – 2017, . Все права защищены. При копировании статьи или любого ее фрагмента ссылка на первоисточник обязательна.

(СПб, 2012).

В данной статье представлена информация по расчету заглубления ленточного фундамента в грунт исходя из пучинистости грунтов, уровня грунтовых вод и глубины промерзания грунта зимой. В продолжении статьи рассказывается о выборе ширины ленточного фундамента исходя из размеров и вида дома.

Мелкозаглубленный ленточный фундамент является одним из самых широко распространенных видов фундаментов для частного дачного строительства. Мелкозаглубленные монолитные ленточные фундаменты более экономичны и просты в исполнении, по сравнению с затратными глубокозаглубленными ленточными фундаментами - “подземными стенами”, которые для надежности зарывают в землю на глубины, превышающие нормативные глубины промерзания грунта зимой в каждой конкретной климатической зоне.

Мелкозаглубленный монолитный ленточный фундамент состоит из непрерывной полосы армированного бетона , которая распологается центрирванно под несущими стенами или конструкциями дома. Мелкозаглубленный ленточный фундамент воспринимает нагрузку от дома и перераспределяет ее на грунт, не вызывая его дополнительного уплотнения. Несущая способность грунта должна быть больше нагрузок на единицу площади, передваемых мелкозаглубленным ленточным фундаментом от постройки.

Мелкозаглубленный ленточный фундамент лучше всего устраивать на непучинистых и слабо пучинстых однородных грунтах , с низким уровнем грунтовых вод, на расстоянии от крупных деревьев равном их высоте, на неподтапливаемых территроиях в радонобезопасных районах .

Мелкозаглубленный ленточный фундамент запрещено строить на биогенных органических грунтах (торф, сапорпель, ил), и не рекомендуется строить на неоднородных слоях грунтов , на стыке разных подлежащих грунтов, на чрезывачнойно пучинстых грунтах (пластичный глинистый водонасыщенный грунт, водонасыщенные пылеватые пески), на подтапливаемых территроиях и на участках с очень высоким уровнем грунтовых вод.

Основные геометрические параметры и конфигурация мелкозаглубленного ленточного фундамента зависят от воспринимаемой нагрузки от здания, от свойств грунта (несущая способность, дренажные свойства, пучинстость), климатических условий (глубина промерзания грунта) и применяемых для стротельства фундамента материалов. Перед расчетом ленточного фундамента рекомендуется провести инженерно-геологическое исследование грунта .

Глубина заложения мелкозаглубленного ленточного фундамента

Минимальная глубина заложения мелкозаглубленного ленточного фундамента определяется глубиной промерзания грунта, степенью пучинстости грунта и высотой грунтовых вод. Чем больше в грунте воды ближе к поверхности (уровню планировки) и чем больше глубина промерзания грунта, тем сильнее будут силы пучения, воздействующие на мелкозаглубленный фундамент снизу, по касательной и сбоку. Эти силы будут выталкивать мелкозаглубленных фундамент к поверхности и будут сдавливать фундамент. Чтобы снизить степень воздействия этих сил ленточных фундамент придется заглублять. Кроме заглубления на силы морозного пучения можно влиять утеплением грунта, устройством несъемной утепленной опалубки фундамента , полной или частичной заменой грунта, его уплотнением, водоотведением и дренированием.

По строительным нормам Великобритании минимальная глубина заложения мелкозаглубленного ленточного фундамента на всех типах непучинистых и малопучинстых грунтов (кроме скального и глинистого) равняется 45 см (The Building Regulations 2010, A1/2, 2E4 - Британские строительные нормы, 2010 год, A1/2, 2E4). На скальном грунте, при физической невозможности заглубления, ленточный фундамент может быть устроен прямо на поверхности без заглубления. Минимальная глубина закладки мелкозаглубленного ленточного фундамента на глинистых (и других пучинистых) грунтах по Британским нормам составляет 75 см (оптимальная глубина заложения 90-100 см ).
В случае чрезмерной мягкости, возможной подвижности (пески, супеси, водонасыщенные грунты) и малой несущей способности поверхностных слоев почвы, глубина заложения мелкозаглубленного ленточного фундамента может быть увеличена до глубин достижения грунтов с хорошими несущими способностями и стабильными характеристиками. Максимальная разумная и экономически оправданная глубина заложения ленточного фундамента - 2,5 метра .

Глубину заложения мелкозаглубленного ленточного фундамента допускается назначать независимо от расчетной глубины промерзания, если фундамент опираются на пески с подтвержденным отсутствием пучинистости. Другой возможностью отступить от привязки глубины заложения ленточного фундамента к глубине промерзания грунта являются " специальные теплотехнические мероприятия, исключающие промерзание грунтов". (Пункт 2.29 СНиП 2.02.01-83 «Основания зданий и сооружений»). То есть горизонтальное утепление грунта и вертикальное утепление мелкозаглубленного ленточного фундамента. Ориентиром из отечественных норм глубин заложения мелкозаглубленного фундамента может служить нижеследующая таблица:

Расчетная глубина промерзания условно непучинистого грунта

Расчетная глубина промерзания слабо пучинстого грунта твердой и полутвердой консистенции

Глубина заложения фундамента

до 2 метров

до 1 метра

до 3 метров

до 1,5 метров

Более 3 метров

от 1,5 до 2,5 м

от 2,5 до 3,5 м

Наличие высоко стоящих грунтовых вод может внести свои коррективы в глубину заложения ленточного фундамента. При высоком уровне грунтовых вод вполне возможно, что мелкозаглубленный ленточный фундамент придется превращать в глубокозаглубленный ленточный фундамент. Для ориентира следует руководствоваться требованиями п. 2.30 СНиП 2.02.01-83 «Основания зданий и сооружений» . Мы приводим ниже таблицу требованиями к глубине заложения фундамента:

Таблица №2. Глубина заложения фундаментов зданий с холодными подвалами и техническими подпольями (имеющими отрицательную температуру в зимний период) в зависимости от глубины расположения уровня подземных вод и глубины сезонного промерзания. *


Грунты под подошвой фундамента, залегающие на глубину не менее нормативной глубины промерзания

Глубина заложения фундаментов в зависимости от глубины расположения уровня подземных вод и глубины сезонного промерзания

Уровень глубины подземных вод выше уровня глубины промерзания грунта + 2 метра

Уровень глубины подземных ниже уровня глубины промерзания + 2 метра

Скальные, крупнообломочные с песчаным заполнителем, пески гравелистые, крупные и средней крупности

не зависит от глубины промерзания грунта

Пески мелкие и пылеватые

не зависит от глубины промерзания грунта

не менее глубины промерзания грунта

не зависит от глубины промерзания грунта

Cуглинки, глины, а также крупно-обломочные грунты с пылевато-глинистым заполнителем

не менее глубины промерзания грунта

Не менее ½ глубины промерзания грунта

* Таблица адаптирована на основании таблицы №2 п. 2.30 СНиП 2.02.01-83 «Основания зданий и сооружений»

Если грунт на вашем участке пучинистый и грунтовые воды стоят высоко, то самое время подумать о применении другого типа фунадмента: свайно-ростверкового фундамента (свайный фундамент с несущими балками). Такой фундамент не боится ни морозного пучения, ни высокого грунтовых вод. Глубина промерзания грунта в России:

Таблица №3 Нормативная глубина сезонного промерзания грунтов (м)

Город

Суглинки, глины

Мелкие пески

Средние и крупные пески

Каменистый грунт

Владимир

Калуга, Тула

Ярославль

Нижний Новгород, Самара

Санкт Петербург. Псков

Новгород

Ижевск, Казань, Ульяновск

Тобольск, Петропавловск

Уфа, Оренбург

Ростов-на- Дону, Астрахань

Брянск, Орел

Екатеринбург

Новосибирск

Высота ленточного фундамента

Максимальная высота надземной части монолитного мелкозаглубленного ленточного фундамента при внутреннем заполнении ограниченного лентой пространства грунтом (песком) для устройства полов (перекрытий) по грунту должна быть равна четырем размерам ширины ленточного фундамента.

Высота фундамента над землей = 4 x Ширина фундамента

Надземная часть монолитного мелкозаглубленного ленточного фундамента не может быть больше его подземной части, но может быть сколь угодно меньше подземной части фундамента. Самым распространенным вариантом является глубина заложения монолитного мелкозаглубленного ленточного фундамента и его высота над землей по 45-50 см (если позволяют условия подлежащих грунтов).

Высота надземной части фундамента меньше либо равна его подземной части.
В большинстве случаев при наличии подпола, в ленточном фундаменте требуются продухи для вентиляции подпола .

Длина здания на ленточном фундаменте
Протяженные здания следует разрезать по всей высоте на отдельные отсеки, длина которых принимается: для слабопучинистых грунтов до 30 м, среднепучинистых - до 25 и, сильнопучинистых - до 20 м, чрезмерно пучинистых - до 15 м. (ВСН 29-85 «Проектирование мелкозаглубленных фундаментов малоэтажных сельских зданий на пучинистых грунтах»)

Читать дальше про расчет

Проблемы морозного пучения грунта не возникают, например, в Израиле или в Африке, но мы живем в России и поэтому нам приходится при строительстве частного загородного дома в первую очередь подумать о том, как предотвратить морозное пучение грунта, особенно если дом без цокольного этажа.

В горной энциклопедии дано определение: «морозное пучение - процесс увеличения объёма и деформирования дисперсных грунтов при промерзании и образования выпуклых форм на их поверхности». Другими словами, это когда во влажном грунте вода замерзает, то его объем увеличивается и, соответственно, этому объему требуется выход.

Так называемые «серые» строители обычно предлагают заказчикам фундаменты, которые обладают большой несущей способностью, чтобы не было просадки дома, однако, эта проблема не является самой распространенной в Подмосковье. Разрушение стен дома или появление конструктивных трещин в абсолютом большинстве случаев связано именно с морозным пучением грунта.

Сила морозного пучения давит на мелкозаглубленный фундамент снизу или на ленточный фундамент сбоку и поднимает весь дом или его часть. Для кирпичных, пеноблочных или газосиликатных домов любая такая подвижка чревата трещиной, а большое число подвижек в течение нескольких лет может привести к разрушению дома. Ситуация усугубляется еще и разной загруженностью дома, разной толщиной снежного покрова, а так же более быстрым оттаиванием грунта на южной стороне.

Относительно спокойно можно себя чувствовать в деревянном доме — там перекосы можно заметить только лет через 10-20. В деревянном доме трещина не поднимается обычно выше фундамента, хотя в крайних ситуациях бывает даже такое, что лопаются стеклопакеты и разрывается сайдинг. Но даже если дом не рушиться, то наличие трещины воспринимается негативно. Кто хотел бы истратить, например, 5 миллионов рублей на строительство и жить в доме с трещиной? Что делать хозяевам таких домов?

Посмотрим на этот дом. Сразу видно, что дом строился без проекта, силами практикантов из ближнего зарубежья, во-первых, форма кровли, мягко говоря, некрасивая (кликните по картинке, чтобы увидеть полное фото), во-вторых, металлические опоры балкона проходят сквозь стену мостиками холода и, конечно, трещина в кирпичной кладке из-за неправильного изготовления фундамента завершает данную «композицию».

У хозяина этого дома, похоже, руки опустились после появления трещины и дом стоит в таком виде уже не один год.

А эти ребята даже въехали в магазин, но потом появилась трещина через все окно от фундамента до крыши. Возникшим напряжением разорвало стеклопакет.

Очень распространенная ситуация: чтобы уменьшить стоимость фундамента , крыльцо делают позже, когда дом уже построен — как будто в этом случае на него денег не надо тратить. А в результате фундамент крыльца отрывается от фундамента дома.

А это отлили бетонный погреб внутри загородного деревянного дома, но однажды погреб начал «расти», и вырос внутрь дома на столько, что пришлось сломать дом и заказчики попросили нас сделать что-нибудь, чтобы не ломая старого фундамента и погреба, построить новый дом. И когда им сказали, что это лучше не сохранять, они ответили «но ведь 10 лет простоял». Вы на сколько лет дом хотите построить на 10 или на 15 или 150 лет?

Глубину заложения фундаментов определяют с учетом вида грунтов, величины их сезонного промерзания, расположения уровня грунтовых вод, особенностей эксплуатации и конструкции дома. Для глин, суглинков и супесей, а также щебенистых, галечниковых и гравийных с глинистым наполнителем грунтов глубину заложения фундаментов принимают не менее величины глубины промерзания. При этом глубина промерзания для неотапливаемых помещений берется на 10% больше среднестатистической, для отапливаемых - на 20 - 30% меньше. Под внутренние стены отапливаемых помещений глубину промерзания можно в расчет не принимать, при условии, что с момента начала строительства и до заселения дома грунт промерзать не будет. То есть, строительство осуществляется за один теплый сезон, или будут приняты меры против промерзания грунта.

Ширина фундамента

Ширина фундаментов в плане зависит от толщины стен с необходимыми теплосберегающими свойствами. Вес кирпичных строений довольно большой, поэтому часто минимальной ширины фундаментов, обусловленной толщиной стен, бывает недостаточно. Площадь основания фундаментов определяют по несущей способности грунта и тем нагрузкам, которые будут приходиться на это основание в процессе эксплуатации дома. Несущую способность грунтов можно определить по таблице 1.

Таблица 1. Несущая способность грунтов

Виды грунтов Несущая способность в
Н/см 2 при глубине в м
1 - 1,5 2 - 2,5
Супеси 10 - 20 20 - 30
Суглинки 9 - 25 10 - 30
Глины твердые 20 - 40 25 - 60
Глины пластичные 8 - 25 10 - 30
Пески гравелистые и крупные 26 - 39 50 - 60
Пески средней крупности 19 - 30 40 - 50
Пески мелкие маловлажные 15 - 25 30 - 40
Пески мелкие и очень влажные 10 - 20 20 - 30
Щебенистые и галечниковые с песчаным заполнением пор 20 - 35 40 - 45
Дресвяные и гравийные грунты, образовавшиеся из горных кристаллических пород 37 - 44 50
Дресвяные и гравийные грунты, образовавшиеся из осадочных горных пород 20 - 25 35 - 40

Рисунок 1. Геологическая карта Подмосковья.

Неогеновая система
N Пески, глины
Меловая система
K 2 Верхний отдел. Трепелы, опоки, глины, пески.
K 1 Нижний отдел. Пески с фосфоритовой галькой, прослои песчаника и глин.
Юрская система
J 3 Верхний отдел. Пески, глины с фосфоритами, пески с порослями песчаников.
J 2 Средний отдел. Пески, глины.
Пермская система
P 2 Верхний отдел. Пестроцветные глины и песчаники.
P 1 Нижний отдел. Пестроцветные глины и мергели.
Каменноугольная система
C 3 Верхний отдел. Известняки и доломиты с порослями мергелей.
C 2 Средний отдел. Известняки, глины, прослои бурого угля.
C 1 Нижний отдел. Известняки, глины, прослои бурого угля.

Более подробно с характеристиками грунтов и их воздействие на фундамент вы можете ознакомиться в цикле статей "Грунт - несущая основа фундаментов":

Нагрузки на основание дома

Нагрузки, приходящиеся на основание дома, складываются из многих составляющих. Это вес конструктивных элементов, природные воздействия (вес снегового покрова на крыше), эксплуатационные нагрузки (вес мебели, людей, бытовой техники и т.п.). Вес основных конструктивных элементов фундамента и стен дома определяют, исходя из строительного объема и удельного веса используемых материалов. Остальные нагрузки, приходящиеся на основание дома, можно определить, исходя из усредненных данных, приведенных в таблице 2.

Таблица 2. Усредненные нагрузки от конструктивных элементов дома, природных и эксплуатационных факторов

Конструктивные элементы дома и природные факторы Нагрузки на основу
дома, кг/м 3
Элементы крыши:
Кровля из листовой стали 20 - 30
Рулонное покрытие 30 - 50
Асбоцементные листы 40 - 50
Черепица гончарная 60 - 80
Перекрытия:
Чердачное по деревянным балкам с плотностью утеплителя 200 кг/м 3 70 - 100
Чердачное по деревянным балкам с плотностью утеплителя 500 кг/м 3 150 - 200
Цокольное по деревянным балкам с плотностью утеплителя 200 кг/м 3 100 - 150
Цокольное по деревянным балкам с плотностью утеплителя 500 кг/м 3 200 - 300
Железобетонное монолитное 250 - 350
Бетонные плиты пустотные 350
Вес снегового покрова:
Для средней полосы РФ 100
Для южных регионов РФ 50
Для северных регионов РФ 190
Эксплуатационные нагрузки:
Для цокольного и межэтажного перекрытия 210
Для чердачного перекрытия 510

Силы морозного пучения

Самыми опасными силами, действующими на фундаменты малоэтажных строений, являются силы морозного пучения . В тяжелых пучинистых грунтах, где присутствуют водонасыщенные глины, суглинки, супеси, они достигают 100 - 150 кПа, а вертикальные перемещения поверхностного слоя грунта при его промерзании на 1 - 1,5 м составляют 10 - 15 см. В результате действия этих сил в зимний период фундаменты поднимаются вверх, а весной снова опускаются на место. Неравномерность подъема и опускания дома приводит к перекосу стен и образованию трещин, "залечить" которые порой бывает невозможно. Поэтому конструкция фундамента должна быть такой, чтобы исключить вертикальное перемещение конструкций дома в зимний период. Избавиться от действия пучинистых грунтов поможет засыпка котлована непучинистыми материалами, как показано на рисунке 3.

Хорошее здание строится на надежном фундаменте, а фундамент в свою очередь - на грунте.

Прежде всего, отметим, что в строительной терминологии под грунтом понимают слой земли, на котором закладывается фундамент строения. Грунты классифицируют по их свойствам, имеющим значение в областях применения. Грунт является основанием фундаментов и воспринимает на себя все нагрузки от веса строения и природных факторов, воздействующих на него. В зависимости от местности, в которой ведется или предполагается строительство догма, грунты могут существенно отличаться друг от друга. Для правильной привязки проекта к местности нужен целый ряд показателей, среди которых - тип грунта, глубина его промерзания и насыщенность почвенными водами, уровень грунтовых вод, рельеф поверхности и т.д.

В результате геологических процессов, происходящих в недрах земли и на ее поверхности, тысячелетиями создавались пласты грунтов, которые могут быть различными не только в пределах определенного региона, но и на более малых площадях. Неравномерность пластовых отложений может быть и в пределах строительного участка, особенно если это связано со сложными геологическими условиями: склоны, овраги, болотистые местности и т. п. На физические свойства основания оказывает существенное влияние не только состав грунтов, глубина расположения определенных их пластов, но и их водонасыщенность, то есть уровень грунтовых вод, влияние паводковых явлений и атмосферной влаги.

Поэтому проектированию дома из керамзитобетонных блоков , и в особенности его опорной части - фундамента, предшествует изучение гидрогеологической обстановки на строительной площадке и сезонность ее изменения. Знание геологической обстановки позволит правильно выбрать тип фундаментов, площадь их опорного основания и глубину его заложения. При словах "изучение гидрогеологической обстановки" у читателя может возникнуть мысль о сложном геологическом оборудовании с буровыми вышками и т.п. Наличие такого оборудования совсем не обязательно на большинстве площадей, особенно при малоэтажном строительстве. Конечно, при сложных геологических условиях могут понадобиться и такие меры, но в большинстве случаев можно обойтись опытом соседей и бурением нескольких скважин или разработки шурфов в пределах строительной площадки.

Покосившиеся заборы на соседних участках, деформации фундаментов существующих зданий, трещины на стенах могут много сказать опытному строителю. Причиной этих явлений может быть малая глубина заложения фундаментов или пренебрежение геологическими особенностями участка. Особенно важно знание гидрогеологической обстановки при сооружении двух - трехэтажных строений с подвалом, защита которого от влияния грунтовой влаги - задача довольно сложная и трудоемкая.

Как правило, отбор грунта осуществляют с помощью ручного зонда в шурфах или скважинах глубиной до 5 м для малоэтажного деревянного дома и до 7 - 10 м - для кирпичных или каменных домов. Скважина, пробуренная на участке, может принести много полезной информации. По изменениям вида грунтов можно определить их физические свойства и глубину расположения, толщину пластов, уровень грунтов и его изменение, а течение нескольких сезонов. Особенно важно знать уровень грунтов в периоды обильных дождей и таяния снега. В это время грунт накапливает много влаги, которая может оказать влияние на эксплуатационные характеристики фундамента, особенно в подвальной части дома. При высоком уровне грунтовых вод придется искусственно его понижать, соорудив дренажную систему или водоотводящую канаву. Наиболее актуальной может стать задача сооружения дренажной системы при строительстве дома с подвалом. Экономия средств и времени на геологические изыскания противопоказана и может повлечь за собой ряд неприятных последствий. В регионах со сложными грунтами, к числу которых относится и Подмосковье, нельзя начинать строительство без проведения этих работ. Только наличие полной информации об инженерногеологической обстановке позволит грамотно выполнить строительную часть проекта дома. При этом шурфов (скважин) требуется не менее четырех (в первую очередь по углам будущего строения).

Глубина промерзания грунтов в ряде случаев оказывает большое влияние на физические процессы, связанные с нагрузками на конструктивные элементы подземной части здания. Глубина промерзания грунта не является величиной постоянной для данной местности и может зависеть от места расположения участка. Так, грунт на участке, расположенном в низменности и защищенном от ветра, может промерзать на меньшую глубину, чем на участке, расположенном на возвышенности, продуваемой всеми ветрами. Но, в любом случае, нужно ориентироваться на глубину сезонного промерзания, являющуюся средней для данного региона. Эти сведения можно получить в любой проектной организации.

Новое на сайте

>

Самое популярное