Домой Хоум Кредит Банк Жидкокристаллические алфавитно-цифровые индикаторы. Жидкокристаллические индикаторы

Жидкокристаллические алфавитно-цифровые индикаторы. Жидкокристаллические индикаторы

Жидкие кристаллы -- это вещества, проявляющие в определенном температурном интервале свойства, как жидкости, так и кристаллов. Они способны в жидком состоянии сохранять упорядоченность молекул (подобно кристаллам). Для создания жидкокристаллических индикаторов используются так называемые нематические жидкие кристаллы, которые являются структурной разновидностью данного класса веществ. Материалом для них служат смеси органических соединений, молекулы которых формируются в упорядоченные решетки. Тонкий слой жидкокристаллического вещества (десятки микрон), помещенный, например, между двумя стеклянными пластинами, довольно хорошо пропускает свет. Однако толстые слои жидкости кристаллов (несколько миллиметров) практически непрозрачны. Это связано с заметными тепловыми беспорядочными колебаниями больших групп молекул, что приводит к изменениям показателя преломления и в конечном счете сильному рассеянию света в жидкокристаллической среде. Особенный интерес представляет изменение оптических характеристик жидких кристаллов под действием внешнего электромагнитного поля. Именно это свойство используется для построения элементов индикации на основе тонких прозрачных слоев жидкокристаллических веществ.

Рис. 1. Жидкокристаллический индикатор на эффекте динамического расстояния: 1--прокладка; 2 -- жидкие кристаллы; 3 -- отражающее покрытие; 4 -- заднее стекло; 5 -- общий электрод; 6 -- прозрачные электроды сегментов; 7 -- переднее стекло

Рис. 2. Жидкокристаллический индикатор, основанный на эффекте вращения плоскости поляризации слоем жидких кристаллов, исчезающем под действием электрического поля (твист-эффект):1-- стеклянная ячейка; 2 -- отражающее покрытие; 3--поляроидная пластина с вертикальной плоскостью поляризации; 4--жидкие кристаллы; 5 -- прокладка; б -- прозрачные электроды; 7 -- поляроидная пластина с горизонтальной плоскостью поляризации

Существуют два принципа (эффекта) работы жидкокристаллических индикаторов. Первый из них состоит в том, что при приложении электрического поля к тонкому слою жидкокристаллического вещества, заключенному между двумя стеклянными пластинками, происходит разрушение упорядоченной структуры жидких кристаллов, что вызывает диффузное рассеяние света в этой области (эффект динамического рассеяния). В результате прозрачный жидкокристаллический слой становится мутным и при внешнем освещении возникает контраст между возбужденным участком жидкости кристаллов и невозбужденным (фоном). При снятии внешнего электрического поля первоначальная структура жидких кристаллов восстанавливается и указанный контраст исчезает. Как показано на рис. 1, принципиально жидкокристаллические индикаторы состоят из двух плоскопараллельных стеклянных пластин, между которыми находится слой жидких кристаллов толщиной 12-- 20 мкм. На одной из стеклянных пластин прозрачным токопроводящим покрытием нанесен рисунок цифры, который представляет собой конфигурацию в виде сегментов, с помощью которых можно воспроизвести цифры от 0 до 9. На другой пластине прозрачным токопроводящим покрытием нанесен электрод, являющийся общим для цифр. Обе пластины покрытыми поверхностя ми обращены друг к другу.

Существуют индикаторы, работающие в отраженном («на отражение») и проходящем («на просвет») свете. В первом случае на заднее стекло индикатора наносится отражающий слой, во втором -- за индикатором должен быть использован дополнительный источник света.

При подаче управляющего напряжения жидкие кристаллы в зоне действия электрического поля теряют прозрачность, и если задняя отражающая поверхность белая, то наблюдатель видит темную цифру на светлом фоне. Если задний отражатель имеет черный цвет и внутренние поверхности корпуса индикатора также зачернены, то матово-светлое изображение цифры будет хорошо заметно на черном фоне.

При работе индикатора на просвет изображение цифры более темное, чем фон. Если при этом мощность установленного источника света составляет 0,5 Вт, то яркость жидкокристаллического индикатора становится сравнимой с яркостью газоразрядного или светодиодного индикатора, используемого в условиях обычной освещенности.

Выводы от сегментов выполнены в виде износостойких токопроводящих дорожек на стекле. Соединение выводов индикатора с элементами схемы управления осуществляется с помощью разъема.

Другим принципом, используемым для создания жидкокристаллических индикаторов, является эффект вращения плоскости поляризации поляризованного света слоем жидких кристаллов, исчезающий под действием электрического поля (твист-эффект). Индикаторы, работающие на этом принципе, получают, помещая капельку жидких кристаллов между двумя скрещенными поляроидными пластинами, которая растекается между ними в виде тонкой пленки. Сами скрещенные поляроиды имеют взаимно перпендикулярные плоскости поляризации света и поэтому являются совершенно непрозрачными. Но если между этими пластинами имеется слой неметаллических жидких кристаллов, которые в результате технологической обработки приобрели свойство вращения плоскости поляризации проходящего света на 90°, то вся эта оптическая система получается прозрачной (рис. 2).

При приложении электрического поля все молекулы жидких кристаллов ориентируются вдоль поля и эффект вращения плоскости поляризации исчезает. В результате через систему, показанную на рис. 2, пропускание света прекращается. Если возбуждается не весь слой жидких кристаллов, а определенные участки в виде символа или цифры, то изображение данного символа (цифры) будет темным в проходящем свете по сравнению с невозбужденной областью (фоном). Этот принцип получения индикации является более прогрессивным, так как даст значительный выигрыш в мощности потребления и позволяет получать более высокий контраст. В большинстве серийно выпускаемых типов жидкокристаллических индикаторов использован данный принцип.

Возбуждение жидкокристаллического слоя в индикаторах осуществляется переменным напряжением синусоидальной формы или формы типа меандр, с эффективным значением (в зависимости от типа) от 2,7 до 30 В и частотой 30--1000 Гц. Постоянная составляющая напряжения не допускается из-за появления электролитического эффекта, что ведёт к резкому сокращению срока службы индикатора. Основным параметром жидкокристаллического индикатора, отражающим качество его работы, является контраст знака по отношению к фону, который определяется как отношение интенсивностей света, выходящего из жидкокристаллического индикатора, в исходном (невозбужденном) и возбужденном состояниях. Контраст измеряется с помощью специальной оптической системы на основе микроскопа с встроенным фотоэлектронным умножителем на выходе. Для устранения внешней засветки объектив микроскопа защищен зачерненным конусом, который направлен на измеряемый индикатор. Плоскость индикатора расположена перпендикулярно оптической оси микроскопа и освещается специальной лампой подсветки, поток которой через конденсатор направлен к измеряемому образцу под углом 45°. С помощью микроамперметра фиксируют два значения тока ФЭУ: при неработающем индикаторе и при приложенном к сегментам управляющем напряжении. Контраст, %, вычисляется по формуле

жидкий кристалл динамический индикатор

К=(Iф --Iз)100/Iф,

где Iф -- ток фона -- фототок фотоэлектронного умножителя при неработающем индикаторе; I3 -- ток знака -- фототок фотоэлектронного умножителя при приложенном к сегментам номинальном управляющем напряжении (изображение знака темнее фона). Значение К современных серийных индикаторов составляет 83--90 %. Реже контраст выражают в относительных единицах (отн. ед.): К=Iф/I3.Чем выше внешняя освещенность, тем ярче изображение на индикаторе. Контраст от освещенности практически не зависит. Основными параметрами жидкокристаллических цифро-знаковых индикаторов являются: контраст знака по отношению к фону, к--отношение разности коэффициента яркости фона и знака индикатора к коэффициенту яркости фона, выраженное в процентах; ток потребления IПОТ -- среднее значение переменного тока, протекающего через индикатор (сегмент) при приложении к нему номинального напряжения управления рабочей частоты; напряжение управления Uупр -- номинальное значение эффективного переменного напряжения, приложенного к сегментам индикатора; рабочая частота напряжения управления fраб; минимальное напряжение управления Uупр-- минимальное значение эффективного переменного напряжения, приложенного к сегментам индикатора, при котором обеспечивается заданный контраст знака по отношению к фону; максимально допустимое напряжение управления Uупрmax-- максимальное значение эффективного переменного напряжения, приложенного к сегментам индикатора, при котором обеспечивается заданная надежность индикатора при длительной работе; время реакции tреак -- интервал времени при включении, в течение которого ток потребления увеличивается до 0,8 максимального значения; время релаксации tрел -- интервал времени при выключении, в течение которого ток потребления снижается до 0,2 максимального значения.

Важнейшей характеристикой цифро-знакового жидкокристаллического индикатора как прибора отображения информации является зависимость контраста знака от напряжения управления. С увеличением напряжения контраст круто растет до порогового значения, после чего увеличение контраста с увеличением Uупр практически не происходит. Значение Uупрmin выбирается на пологом участке кривой вблизи порога. Отметим, что контраст знака индикатора является функцией эффективного значения Uупр и практически не зависит от его формы.

Жидкокристаллический индикатор как элемент электрической цепи эквивалентен конденсатору. Вследствие этого вольт-амперная характеристика Iпот=f(Uупр) при номинальной частоте управляющего напряжения близка к линейной, а частотная характеристика Uпотр = ф(fраб) имеет вид монотонно возрастающей кривой. Постоянная составляющая управляющего напряжения не должна превышать 1 % эффективного значения Uупр.

Рис. 3.

Важной особенностью жидкокристаллического индикатора является низкий ток потребления -- единицы или сотни микроампер (в зависимости от принципа работы). В интервале рабочих температур ток потребления несколько увеличивается с ростом температуры. Жидкокристаллический индикатор имеет низкое быстродействие, связанное с инерционными процессами перестройки структур органических кристаллов. Быстродействие существенно зависит от температуры. В зоне температур, близких к нижнему пределу, быстродействие резко падает. Измерения временных параметров tpеак и tрел, приводимых в таблицах, производятся на уровне соответственно 0,8 и 0,2 установившегося значения, как показано на рис. 3. Проверку времени реакции и релаксации серийных приборов производят визуально по появлению и исчезновению (при прямом наблюдении) знаков при подаче на них прерывистого напряжения управления с длительностью воздействия 800 мс и длительностью паузы 800 мс. Жидкокристаллические индикаторы работают в весьма узком интервале температур. Подавляющее большинство жидкокристаллических индикаторов не работает при окружающей температуре ниже +1 °С, так как в этих условиях материал переходит в состояние полутвердого кристалла. При приближении к нижнему температурному пределу индикатор реагирует на приложение напряжения все медленнее и в конце концов полностью теряет работоспособность. Индикаторы восстанавливают свои характеристики после возвращения их из среды с низкой температурой в среду с температурой, соответствующей температуре рабочего диапазона. В связи с этим хранение индикаторов разрешается при температуре до --40 °С.

По числу разрядов в одном корпусе цифро-знаковые индикаторы делятся на 1-разрядные, 4-разрядные, 6-разрядные, 9-разрядные. Нумерация разрядов принята возрастающей слева направо.

Существуют также жидкокристаллические индикаторы, отображающие различные символы, специальные знаки и надписи. Цифро-знаковые жидкокристаллические индикаторы изготавливаются в пластмассовых корпусах или из стекла с компаундным упрочнением по периметру с выводами под распайку или под разъем.

В процессе эксплуатации следует избегать попадания на контактную площадку влаги и пыли, вызывающих межэлектродные замыкания. Очищать поверхность индикатора рекомендуется чистым батистом, слегка смоченным этиловым спиртом.

Система обозначений жидкокристаллических индикаторов содержит несколько букв и цифр. Сочетание ИЖК означает: индикатор жидкокристаллический. Четвертый элемент обозначения: буква Ц означает-- цифровой, а С -- символьный. Пятый элемент -- цифра, указывающая номер разработки. Цифра после дефиса указывает число разрядов индикатора, а число через косую дробную черту соответствует высоте в миллиметрах цифры (символа) в разряде.

Приборы, разработанные до введения описанной системы, обозначены иначе. Например, наименование ЦИЖ-5 расшифровывается следующим образом: цифровой индикатор жидкокристаллический, номер разработки 5, а ИЖК-2 -- индикатор жидкокристаллический, номер разработки 2. Использование жидкокристаллических индикаторов в радиоэлектронной аппаратуре стимулируется рядом факторов: низкими токами потребления и напряжениями управления, совместимостью работы с интегральными микросхемами, низкой стоимостью.

Возможными областями их применения являются: индикаторные устройства измерительной аппаратуры, электронные часы и микрокалькуляторы, информационные панели и указатели. Весьма сложным аспектом применения жидкокристаллических приборов являются средства управления (особенно это относится к многоразрядным индикаторам). На рис. 4 показана схема возбуждения сегментов сигналом переменного напряжения. Устройство состоит из двух логических схем И с двумя входами DD2, DD3, инвертора DD1 и ключа-формирователя из транзисторе VT. На коллектор транзистора подается напряжение, равное двойной амплитуде номинального переменного напряжения возбуждения данного жидкокристаллического индикатора. С транзистора VT на сегмент индикатора снимается однополярное переменное напряжение прямоугольной формы амплитудой 40 В. Для уничтожения постоянной составляющей импульсного питающего напряжения (она недопустима из физических условий работы жидких кристаллов) к общему электроду прикладывается постоянное напряжение 20 В.

На вход DD2 подается напряжение возбуждения с частотой fв=30-50 Гц, а на вход DD3 -- напряжение гашения с частотой fг = 10-40 кГц. При низком логическом уровне управляющего сигнала открывается DD2 и транзистор работает в импульсном режиме с частотой, соответствующей частоте возбуждения жидкокристаллического сегмента. Управляющий сигнал с высоким логическим уровнем, поступающий с дешифратора на управляющий вход, открывает DD3. В результате устройство формирует напряжение повышенной частоты, на которую жидкокристаллический сегмент не реагирует. С учетом того, что устройство управления должно быть соизмеримо по потребляемой мощности с жидкокристаллическим индикатором, все логические схемы выполнены на основе КМОП-структур.

Рис. 4.

Кроме описанного используется также другой тип устройства возбуждения жидкокристаллических индикаторов. Его схема показана на рис. 5. На входы логических схем И DD2 и DD3 от внешнего генератора подаются импульсные напряжения с частотой f=l5-25 Гц, сдвинутые по фазе относительно друг друга на 180град. В зависимости от уровня управляющего сигнала на сегмент индикатора через ключ-формирователь (транзистор VT1) прикладывается напряжение прямоугольной формы, прямое либо сдвинутое по фазе. На общий электрод индикатора через другой ключ-формирователь (транзистор VT2) постоянно подается сигнал одной фазы.

При совпадении фаз на электродах сегмента последний не возбуждается; при различии фаз происходит возбуждение сегмента. Отметим, что фазовый способ управления позволяет уменьшить напряжение питания индикатора в 2 раза.

При использовании многоразрядных индикаторов требуется большое число внешних соединений, необходимых для управления сегментов. Это заставляет прибегать к созданию мультиплексного управления. На рис. 6 показан принцип управления 4-разрядным цифровым индикатором с разделенными общими электродами для каждого разряда, который заключается в объединении идентичных сегментов по всем разрядам и последовательной адресации данных в соответствующие разряды. Процесс отображения 4-разрядного числа осуществляется по тактам В каждом такте переменное управляющее напряжение прикладывается к шине управления сегментов и к линии общего электрода того разряда, который возбуждается в данном такте. Благодаря большому времен» релаксации жидких кристаллов цифры разрядов в период между тактами возбуждения продолжают читаться без приложения напряжения.

Рис. 5.

Рис. 6.

Литература

  • 1. В. И. Иванов, А. И. Аксенов, А. М. Юшин „Полупроводниковые оптоэлектронные приборы”//Справочник.-М: Энергоатомиздат.-1989.
  • 2. А.М. Юшин. Оптоэлектронные приборы и их зарубежные аналоги. Сптавочник.-М.:РадиоСофт.-2003(в 5-ти томах)
  • 3. А. П. Кашкаров. Регулятор яркости подсветки шкалы.-Радио,№9.-2004.-С.0
  • 4. А.П. Кашкаров. Бегущие огни + цветомузыка. - Радиомир,№11.-2004.-С.38
  • 5. А.П. Кашкаров. Некоторые отечественные аналоги популярных зарубежных радиоэлементов.-Радиохобби, №2.-2003.-С.31.

Название : Справочник - Знакосинтезирующие индикаторы.

Приведены подробные справочные данные о серийно выпускаемых типах индикаторов: электролюминесцснтных, вакуумных люминесцентных, вакуумных накаливаемых, полупроводниковых, газоразрядных, жидкокристаллических. Кратко описаны физические процессы, принципы конструирования, параметры и характеристики, области применения. Рассмотрены схемы управления.

Содержание.

Предисловие редактора. 8
Введение. 10
ЧАСТЬ I. ОБЩИЕ СВЕДЕНИЯ
1. Классификация и условные обозначения знакосинтезирующих индикаторов.
1.1. Классификация. 13
1 2. Условные обозначения. 16
1.3. Основные светотехнические параметры знакосинтезирующих индикаторов.
2. Вакуумные люминесцентные и никаливаемые знакосинтезирующие индикаторы. 27
2.1. Физический принцип действия вакуумных люминесцентных индикаторов.
2.2. Конструктивные особенности вакуумных люминесцентных индикаторов. 28
2.3. Принцип действия и управления вакуумных люминесцентных индикаторов.
2.4. Типы вакуумных люминесцентных индикаторов и их основные параметры.
2.5. Области применения вакуумных люминесцентных индикаторов. 32
2.6. Вакуумные накаливаемые знакосинтезирующие индикаторы. 33
3. Газоразрядные знакосинтезирующие индикаторы. 35
3.1. Физический принцип действия. 35
3.2. Конструктивные особенности. 43
3.3. Принцип управления. 45
3.4. Основные параметры. 49
3.5. Области применения и перспективы развития. 49
4. Жидкокристаллические знакосинтезирующие индикаторы. 50
4.1 Электрооптические эффекты в жидких кристаллах, используемые в индикаторах. 50
4.2. Особенности конструкции жидкокристаллических индикаторов. 55
4.3. Принципы управления. 57
5. Полупроводниковые знакосинтезирующие индикаторы. 60
5.1. Физический принцип действия. 60
5.2. Основные материалы. 62
5.3. Конструктивные особенности. 64
5.4. Управление индикаторами. 65
5.5. Перспективы развития. 68
6. Электролюминесцентные знакоситезирующие индикаторы. 69
6.1. Физический принцип действия. 69
6.2. Конструктивные особенности. 71
6.3. Типы электролюминесцентных индикаторов и их основные параметры. 73
6.4. Области применения. 74
7. Методика оценки эффективности применения знакосинтезирующих индикаторов в средствах отображения информации. 76
7.1. Основы методики. 76
7.2. Алгоритмы оценки эффективности применения знакосинтезирующих индикаторов в средствах отображения информации. 83
8. Рекомендации по применению и эксплуатации. 85
8.1. Выбор знакосинтезирующих индикаторов. 85
8.2. Эксплуатация знакосинтезирующих индикаторов. 135
ЧАСТЬ II. ОСНОВНЫЕ ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ЗНАКОСИНТЕЗИРУЮЩИХ ИНДИКАТОРОВ И СХЕМ УПРАВЛЕНИЯ ИМИ.
Общие сведения. 137
Условные обозначения параметров. 137
Единичные знакосинтезирующие индикаторы. 140
Вакуумные люминесцентные знакосинтезирующие индикаторы. 140
Газоразрядные знакосинтезирующие индикаторы. 152
Полупроводниковые знакосинтезирующие индикаторы. 156
Электролюминесцентные знакосинтезирующие индикаторы. 175
Цифровые знакосинтезирующие индикаторы. 179
Цифровые одноразрядные знакосинтезирующие индикаторы. 179
Вакуумные люминесцентные знакосинтезирующие индикаторы. 179
Вакуумные накаливаемые знакосинтезирующие индикаторы. 197
Газоразрядные знакосинтезирующие индикаторы. 210
Жидкокристаллические знакосинтезирующие индикаторы. 213
Полупроводниковые знакосинтезирующие индикаторы. 215
Электролюминесцентные знакосинтезирующие индикаторы. 276
Цифровые многоразрядные знакосинтезирующие индикаторы. 278
Вакуумные люминесцентные знакосинтезирующие индикаторы. 278
Газоразрядные знакосинтезирующие индикаторы. 312
Жидкокристаллические знакосинтезирующие индикаторы. 317
Полупроводниковые знакосинтезирующие индикаторы. 351
Буквенно-цифровые знакосинтезирующие индикаторы. 355
Вакуумные люминесцентные одноразрядные знакосинтезирующие индикаторы.
Газоразрядные одноразрядные знакосинтезирующие индикаторы. 382
Жидкокристаллические одноразрядные знакосинтезирующие индикаторы. 388
Полупроводниковые одноразрядные знакосинтезирующие индикаторы. 390
Электролюминесцентные одноразрядные знакосинтезирующие индикаторы. 407
Газоразрядные многоразрядные знакосинтезирующие индикаторы. 412
Шкальные знакосинтезирующие индикаторы. 425
Вакуумные люминесцентные знакосинтезирующие индикаторы. 425
Газоразрядные знакосинтезирующие индикаторы. 428
Полупроводниковые знакосинтезирующие индикаторы. 435
Электролюминесцентные знакосинтезирующие индикаторы. 56
Мнемонические знакосинтезирующие индикаторы. 459
Вакуумные люминесцентные знакосинтезирующие индикаторы. 459
Жидкокристаллические знакосинтезирующие индикаторы. 463
Электролюминесцентные знакосинтезирующие индикаторы. 479
Графические знакосинтезирующие индикаторы. 488
Вакуумные люминесцентные знакосинтезирующие индикаторы. 488
Газоразрядные знакосинтезирующие индикаторы. 497
Полупроводниковые знакосинтезирующие индикаторы. 543
Электролюминесцентные знакоснинтезирующие индикаторы. 554
Интегральные схемы управления знакосинтезирующими индикаторами. 560
Список литературы.

Классификация знакосинтезирующих индикаторов .

В настоящее время принята классификация ЗСИ по следующим признакам: виду отображаемой информации; виду элементов отображения информации и способу формирования информационного поля; расстоянию наблюдения и числу наблюдателей; помехоустойчивости; привычности начертания знаков; числу знакомест; способу преобразования энергии; физическому принципу, положенному в основу работы; конструктивному оформлению; материалу корпуса; значению питающего напряжения; виду питающего напряжения (тока); числу элементов; способу управления.

По виду информации, для отображения которой ЗСИ предназначены, они делятся на: единичные - для отображения информации в виде точки, круга, квадрата, прямоугольника или другой простой геометрической фигуры; цифровые - для отображения информации в виде цифр; буквенно-цифровые - для отображения информации в виде букв различных алфавитов, цифр, знаков препинания, математических и других специальных знаков и символов; шкальные - для отображения информации в виде уровней или значений величин, дискретных, аналоговых и дискретно-аналоговых шкал или их частей как оцифрованных, так и неоцифрованных; мнемонические - для отображения информации в виде мнемосхем или их частей; графические - для отображения информации в виде букв различных алфавитов, цифр, знаков препинания, математических и других специальных знаков и символов, графиков и другой сложной информации, в том числе и телевизионной.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Справочник - Знакосинтезирующие индикаторы - Вуколов Н.И., Михайлов А.Н. - fileskachat.com, быстрое и бесплатное скачивание.

Жидкокристаллические индикаторы появились недавно (70-е годы) и стали широко применяться в качестве СОИ. ЖК-индикаторы - пассивные устройства. Они не генерируют свет и требуют дополнительной подсветки, сами же выполняют роль модулятора, работая в режиме пропускания или отражения света.

Жидкие кристаллы (ЖК) представляют собой органические жидкости, имеющие удлиненные стержнеобразные молекулы. Различают ЖК трех типов (рис. 5.2): смектические, нематические и холестерические.

В смектических ЖК сильно вытянутые молекулы располагаются слоями одинаковой толщины, близкой к длине молекул. Ориентированы молекулы параллельно друг другу. У нематических ЖК отсутствует слоистая структура, а молекулы также ориентированы параллельно друг другу своими длинными осями. Холестерические ЖК имеют структуру слоистую, но в каждом слое молекулы вытянуты в некотором преимущественном направлении.

Рис. 5.2 - Типы жидкокристаллических индикаторов:

а - смектические; б - нематические; в - холестерические

Ориентация отдельной молекулы ЖК подвергается непрерывным тепловым флюктуациям, однако в любой точке жидкости существует средняя ориентация, характеризуемая единичным вектором, называемым директором D. Когда ЖК-вещество занимает большой объем, то в молекуле появляются области с независимыми ориентациями директора. Для придания одинаковой ориентации во всем рабочем пространстве ЖК заключают в узкое (несколько десятков микрометров) пространство между подложками. В результате специфическая ориентация молекул ЖК определяется и соседними молекулами, и граничной поверхностью подложки. Ориентирующее действие достигается напылением на подложки тонких пленок SiO 2 .

Молекулы ЖК представляют собой индивидуальные диполи. Ориентация молекул может меняться в результате различных электрогидродинамических эффектов, обусловленных протеканием даже небольшого тока или под действием электрического поля.

Конструкция элементарной ячейки ЖК-индикатора проста и содержит две стеклянные пластины, имеющие на внутренней стороне прозрачное проводящее покрытие. Между пластинами залит ЖК. Толщина ЖК лежит в пределах от 6 до 25 мкм. Такая конструкция по сути представляет собой плоский конденсатор. При отсутствии напряжения на ячейке ЖК-вещество однородно и прозрачно. При приложении к ячейке порогового напряжения возникает волнистая доменная структура. При превышении порогового напряжения доменная структура превращается в ячеистую, затем в жидкости возникает вихревое движение. ЖК теряет оптическую однородность и рассеивает свет во всех направлениях. Этот эффект называют динамическим рассеиванием. В настоящее время распространены индикаторы на основе эффекта динамического рассеивания, а также индикаторы, использующие полевой твист-эффект (закручивание) и эффект типа «гость-хозяин».

В настоящее время наиболее распространены индикаторы, использующие полевой твист-эффект (от англ. twist - закручивание). Работа ячейки со скрещенными поляризатором П и анализатором А показана на рис. 5.3.

В отсутствие напряжения питания на ячейке молекулы ЖК закручены приблизительно на 90° благодаря ориентирующему действию подложек П и А.

Поляризатор - это оптический элемент, пропускающий свет, поляризованный в одном направлении, и гасящий свет, поляризованный в противоположном направлении, в зависимости от ориентации поляризатора. Если оси второго поляризатора, называемого анализатором, параллельны осям первого, то свет проходит через второй поляризатор; если же оси анализатора перпендикулярны, излучение гасится.

Рис. 5.3 - Работа ЖК-индикатора на твист-эффекте при напряжениях:

а - нулевом; б - превышающем пороговое

Свет, падающий сверху, поляризуется таким образом, что его вектор поляризации совпадает с направлением директора D у верхней подложки. При прохождении через ЖК плоскость поляризации света вращается (как директор у молекул ЖК) и свет проходит через анализатор. При питании ячейки напряжением выше порогового, вектор поляризации ЖК приобретает вертикальное направление и ЖК не вращают плоскость поляризации, а анализатор не пропускает свет.

ЖК-индикаторы имеют преимущества по сравнению с индикаторами на эффекте динамического рассеяния (меньше рабочие токи 1-3 мкА/ см 2 вместо 10 мкА/ см 2 , и поэтому большую долговечность). Быстродействие ЖК на твист-эффекте гораздо выше, чем при использовании динамического рассеяния.

К недостаткам ЖК-индикаторов на твист-эффекте относится меньший, чем у индикаторов на эффекте динамического рассеяния, угол обзора, что связано с узкой диаграммой направленности света при твист-эффекте и влиянием поляризаторов. Применение поляризаторов приводит к потерям до 50 % света, а также повышает стоимость индикаторов.

Индикаторы без поляризаторов могут быть созданы на основе эффекта «гость-хозяин». Стержневидные молекулы красителя (гость) вводятся в ЖК (хозяин). Молекулы красителя стремятся ориентироваться параллельно осям молекул ЖК (рис. 5.4).


Рис. 5.4 - Работа ЖК-ячейки на эффекте «гость-хозяин» при напряжениях:

а - нулевом; б - превышающем пороговое; 1 - молекулы красителя; 2 - молекулы ЖК

В начальном состоянии, при нулевом напряжении на ЖК-ячейке, свет с любым направлением поляризации поглощается (рис. 5.4, а ). При наложении достаточно сильного электрического поля ЖК-вещество переходит в состояние, в котором все молекулы красителя ориентированы вертикально, а падающий на ячейку свет свободно проходит сквозь нее (рис. 5.4, б ).

Описанная система перспективна, так как позволяет получить почти черное позитивное изображение на белом фоне при высокой яркости и достаточно широком угле обзора. Контраст у индикаторов на эффекте «гость-хозяин» несколько хуже вследствие поглощения света красителем.

Достоинства ЖК-индикаторов заключаются в следующем:

Малая потребляемая мощность (110 мкВт/см 2);

Работа при высоком уровне внешней освещенности;

Простота конструкции и технологии изготовления;

Низкая стоимость, низкое рабочее напряжение.

К основным недостаткам ЖК-индикаторов следует отнести узкий диапазон рабочих температур (от -10 до +60° С), длительные переходные процессы, к тому же зависящие от температуры.

В табл. 5.5 приведены параметры некоторых ЖК-индика-торов, выпускаемых в нашей стране.

Таблица 5.5

В настоящее время проводятся работы по созданию матричных ЖК-индикаторов. Значительные успехи достигнуты в создании полицветных ЖК-индикаторов с использованием цветных светофильтров.

Жидкие кристаллы - это вещества, проявляющие в определенном температурном интервале свойства как жидкости, так и кристаллов. Они способны в жидком состоянии сохранять упорядоченность молекул (по­добно кристаллам). Для создания индикаторы на жидких кристаллах используются так называемые нематические жидкие кристаллы, которые являются структурной разновидностью данного класса веществ. Материалом для них служат смеси органических соединений, молекулы которых формируются в упорядоченные решетки.

Тонкий слой ЖК вещества (десятки микрон), помещенный, например, между двумя стеклянными пластинами, довольно хорошо пропускает свет. Однако толстые слои жидкости кристаллов (несколько миллиметров) практически непрозрачны. Это связано с заметными тепловыми беспорядочными колебаниями больших групп молекул, что приводит к изменениям показателя преломления и в конечном счете сильному рассеянию света в жидкокристаллической среде. Особенный интерес представляет изменение оптических характеристик жидких кристаллов под действием внешнего электромагнитного поля. Именно это свойство используется для построения элементов индикации на основе тонких прозрачных слоев жидкокристаллических веществ.

Рис. 1. Жидкокристаллический индикатор на эффекте динамического расстояния:

1-прокладка; 2 - жидкие кристаллы; 3 - отражающее покрытие; 4 - заднее стекло; 5 - общий электрод; 6 - прозрачные электроды сегментов; 7 - переднее стекло

Рис. 2. Жидкокристаллический индикатор, основанный на эффекте вращения плоскости поляризации слоем жидких кристаллов, исчезающем под действием электрического поля (твист-эффект):

1- стеклянная ячейка; 2 - отражающее покрытие; 3-поляроидная пластина с вертикальной плоскостью поляризации; 4-жидкие кристаллы; 5 - прокладка; б - прозрачные электроды; 7 - поляроидная пластина с горизонтальной плоскостью поляризации

Существуют два принципа (эффекта) работы индикаторы на жидких кристаллах. Первый из них состоит в том, что при приложении электрического поля к тонкому слою ЖК вещества, заключенному между двумя стеклянными пластинками, происходит разрушение упорядоченной структуры жидких кристаллов, что вызывает диффузное рассеяние света в этой области (эффект динамического рассеяния). В результате прозрачный жидкокристаллический слой становится мутным и при внешнем освещении возникает контраст между возбужденным участком жидкости кристаллов и невозбужденным (фоном). При снятии внешнего электрического поля первоначальная структура жидких кристаллов восстанавливается и указанный контраст исчезает.

Как показано на рис. 1, принципиально жидкокристаллические индикаторы состоят из двух плоскопараллельных стеклянных пластин, между которыми находится слой жидких кристаллов толщиной 12- 20 мкм. На одной из стеклянных пластин прозрачным токопроводящим покрытием нанесен рисунок цифры, который представляет собой конфигурацию в виде сегментов, с помощью которых можно воспроизвести цифры от 0 до 9. На другой пластине прозрачным токопроводящим покрытием нанесен электрод, являющийся общим для цифр. Обе пластины покрытыми поверхностями обращены друг к другу.

Существуют индикаторы, работающие в отраженном («на отражение») и проходящем («на просвет») свете. В первом случае на заднее стекло ИЖК наносится отражающий слой, во втором - за индикатором должен быть использован дополнительный источник света.

При подаче управляющего напряжения жидкие кристаллы в зоне действия электрического поля теряют прозрачность, и если задняя отражающая поверхность белая, то наблюдатель видит темную цифру на светлом фоне. Если задний отражатель имеет черный цвет и внутренние поверхности корпуса также зачернены, то матово-светлое изображение цифры будет хорошо заметно на черном фоне.

При работе прибора на просвет изображение цифры более темное, чем фон. Если при этом мощность установленного источника света составляет 0,5 Вт, то яркость жидко кристаллического инди катора становится сравнимой с яркостью газоразрядного или светодиодного табло, используемого в условиях обычной освещенности.

Выводы от сегментов выполнены в виде износостойких токопроводящих дорожек на стекле. Соединение выводов табло с элементами схемы управления осуществляется с помощью разъема.

Другим принципом, используемым для создания табло на жидких кристаллах, является эффект вращения плоскости поляризации поляризованного света слоем жидких кристаллов, исчезающий под дей­ствием электрического поля (твист-эффект). Индикаторы, работающие на этом принципе, получают, помещая капельку жидких кристаллов между двумя скрещенными поляроидными пластинами, которая растекается между ними в виде тонкой пленки. Сами скрещенные поляроиды имеют взаимно перпендикулярные плоскости поляризации света и поэтому являются совершенно непрозрачными. Но если между этими пластинами имеется слой неметаллических жидких кристаллов, которые п результате технологической обработки приобрели свойство вращения плоскости поляризации проходящего света на 90°, то вся эта оптическая система получается прозрачной (рис. 2).

При приложении электрического поля все молекулы жидких кристаллов ориентируются вдоль поля и эффект вращения плоскости поляризации исчезает. В результате через систему, показанную на рис. 2, пропускание света прекращается. Если возбуждается не весь слой жидких кристаллов, а определенные участки в виде символа или цифры, то изображение данного символа (цифры) будет темным в проходящем свете по сравнению с невозбужденной областью (фоном). Этот принцип получения индикации является более прогрессивным, так как даст значительный выигрыш в мощности потребления и позволяет получать более высокий контраст. В большинстве серийно выпускаемых типов жидкокристаллические индикаторы использован данный принцип.

Возбуждение ЖК слоя в индикаторах осуществляется переменным напряжением синусоидальной формы или формы типа меандр, с эффективным значением (в зависимости от типа) от 2,7 до 30 В и частотой 30-1000 Гц. Постоянная составляющая напряжения не допускается из-за появления электролитического эффекта, что ведёт к резкому сокращению срока службы приборов индикаторы. Основным параметром ИЖК, отражающим качество его работы, является контраст знака по отношению к фону К, который определяется как отношение интенсивностей света, выходящего из ИЖК, в исходном (невозбужденном) и возбужденном состояниях. Контраст измеряется с помощью специальной оптической системы на основе микроскопа с встроенным фотоэлектронным умножителем на выходе. Для устранения внешней засветки объектив микроскопа защищен зачерненным конусом, который направлен на измеряемый индицикатор. Плоскость индикат. расположена перпендикулярно оптической оси микроскопа и освещается специальной лампой подсветки, поток которой через конденсатор направлен к измеряемому образцу под углом 45°. С помощью микроамперметра фиксируют два значения тока ФЭУ: при неработающем индикаторе и при приложенном к сегментам управляющем напряжении. Контраст, %, вычисляется по формуле

К=(Iф -Iз)100/Iф,

где Iф - ток фона - фототок фотоэлектронного умножителя при неработающем индикаторе; I3 - ток знака - фототок фотоэлектронного умножителя при приложенном к сегментам номинальном управляющем напряжении (изображение знака темнее фона). Значение К современные серийные индикаторы имеют порядка 83-90 %. Реже контраст выражают в относительных единицах (отн. ед.): К=Iф/I3.

Чем выше внешняя освещенность, тем ярче изображение на индикаторе. Контраст от освещенности практически не зависит.

Основными параметрами жидкокристаллических цифро-знаковых индикаторов являются:

контраст знака по отношению к фону К-отношение разности коэффициента яркости фона и знака индикатора к коэффициенту яркости фона, выраженное в процентах;

ток потребления IПОТ - среднее значение переменного тока, протекающего через сегмент при приложении к нему номинального напряжения управления рабочей частоты;

напряжение управления Uупр - номинальное значение эффективного переменного напряжения, приложенного к сегментам индикат.;

рабочая частота напряжения управления fраб;

минимальное напряжение управления Uупр- минимальное значение эффективного переменного напряжения, приложенного к сегментам индикат., при котором обеспечивается заданный контраст знака по отношению к фону;

максимально допустимое напряжение управления Uупрmax- максимальное значение эффективного переменного напряжения, приложенного к сегментам индикат., при котором обеспечивается заданная надежность индикатора при длительной работе;

время реакции tреак - интервал времени при включении, в течение которого ток потребления увеличивается до 0,8 максимального значения;

время релаксации tрел - интервал времени при выключении, в течение которого ток потребления снижается до 0,2 максимального значения.

Важнейшей характеристикой цифро-знакового ИЖК как прибора отображения информации является зависимость контраста знака от напряжения управления. С увеличением напряжения контраст круто растет до порогового значения, после чего увеличение контраста с увеличением Uупр практически не происходит. Значение Uупрmin выбирается на пологом участке кривой вблизи порога. Отметим, что контраст знака индикатора является функцией эффективного значения Uупр и практически не зависит от его формы.

Жидкокристаллический индик. как элемент электрической цепи эквивалентен конденсатору. Вследствие этого вольт-амперная характеристика Iпот=f(Uупр) при номинальной частоте управляющего напряжения близка к линейной, а частотная характеристика Uпотр = ф(fраб) имеет вид монотонно возрастающей кривой. Постоянная составляющая управляющего напряжения не должна превышать 1 % эффективного значения Uупр.

Рис. 3. Временная диаграмма нарастания и спада тока потребления жидкокристаллического индикатора (б) при подаче управляющего переменного напряжения (а)

Важной особенностью ЖК индикатора является низкий ток потребления - единицы или сотни микроампер (в зависимости от принципа работы). В интервале рабочих температур ток потребления несколько увеличивается с ростом температуры. Жидкокристаллический индикат. имеет низкое быстродействие, связанное с инерционными процессами перестройки структур органических кристаллов. Быстродействие существенно зависит от температуры. В зоне температур, близких к нижнему пределу, быстродействие резко падает. Измерения временных параметров tpеак и tрел, приводимых в таблицах, производятся на уровне соответственно 0,8 и 0,2 установившегося значения, как показано на рис. 3. Проверку времени реакции и релаксации серийных приборов производят визуально по появлению и исчезновению (при прямом наблюдении) знаков при подаче на них прерывистого напряжения управления с длительностью воздействия 800 мс и длительностью паузы 800 мс.Такие индикаторы работают в весьма узком интервале температур. Подавляющее большинство жидкокристаллических индикаторов не работает при окружающей температуре ниже +1 °С, так как в этих условиях материал переходит в состояние полутвердого кристалла. При приближении к нижнему температурному пределу индикат. реагирует на приложение напряжения все медленнее и в конце концов полностью теряет работоспособность. Индикаторы восстанавливают свои характеристики после возвращения их из среды с низкой температурой в среду с температурой, соответствующей температуре рабочего диапазона. В связи с этим хранение индикаторов разрешается при температуре до -40 °С.

По числу разрядов в одном корпусе цифро-знаковые индикаторы делятся на 1-разрядные, 4-разрядные, 6-разрядные, 9-разрядные. Нумерация разрядов принята возрастающей слева направо.

Существуют также табло, отображающие различные символы, специальные знаки и надписи.

Цифро-знаковые табло изготавливаются в пластмассовых корпусах или из стекла с компаундным упрочнением по периметру с выводами под распайку или под разъем.

В процессе эксплуатации следует избегать попадания на контактную площадку влаги и пыли, вызывающих межэлектродные замыкания. Очищать поверхность индикатора рекомендуется чистым батистом, слегка смоченным этиловым спиртом.

Система обозначений жидкокристаллических индикаторов содержит несколько букв и цифр. Сочетание ИЖК означает: индикат. жидкокристаллический. Четвертый элемент обозначения: буква Ц означает- цифровой, а С - символьный. Пятый элемент - цифра, указывающая номер разработки. Цифра после дефиса указывает число разрядов индикатора, а число через косую дробную черту соответствует высоте в миллиметрах цифры (символа) в разряде.

Приборы, разработанные до введения описанной системы, обозначены иначе. Например, наименование ЦИЖ-5 расшифровывается следующим образом: цифровой индикатор жидкокристаллический, номер раз­работки 5, а ИЖК-2 - индикатор жидкокристаллический, номер разработки 2.

Использование жидкокристаллических индикаторов в радиоэлектронной

аппаратуре стимулируется рядом факторов: низкими токами потребления и напряжениями управления, совместимостью работы с интегральными микросхемами, низкой стоимостью.

Возможными областями их применения являются: индикаторные устройства измерительной аппаратуры, электронные часы и микрокалькуляторы, информационные панели и указатели. Весьма сложным аспектом применения жидкокристаллических приборов являются средства управления (особенно это относится к многоразрядным индикаторам). На рис. 4 показана схема возбуждения сегментов сигналом переменного напряжения. Устройство состоит из двух логических схем И с двумя входами DD2, DD3, инвертора DD1 и ключа-формирователя из транзисторе VT. На коллектор транзистора подается напряжение, равное двойной амплитуде номинального переменного напряжения возбуждения данного ЖК индикатора. С транзистора VT на сегмент индикатора снимается однополярное переменное напряжение прямоугольной формы амплитудой 40 В. Для уничтожения постоянной составляющей импульсного питающего напряжения (она недопустима из физических условий работы жидких кристаллов) к общему электроду прикладывается постоянное напряжение 20 В.

На вход DD2 подается напряжение возбуждения с частотой fв=30-50 Гц, а на вход DD3 - напряжение гашения с частотой fг = 10-40 кГц. При низком логическом уровне управляющего сигнала открывается DD2 и транзистор работает в импульсном режиме с частотой, соответствующей частоте возбуждения ЖК сегмента. Управляющий сигнал с высоким логическим уровнем, поступающий с дешифратора на управляющий вход, открывает DD3. В результате устройство формирует напряжение повышенной частоты, на которую жидкокристаллический сегмент не реагирует. С учетом того, что устройство управления должно быть соизмеримо по потребляемой мощности с жидкокристаллическим индикатором, все логические схемы выполнены на основе КМОП-структур.

Рис. 4. Схема возбуждения сегментов ЖК индикатора переменным напряжением различной частоты

Кроме описанного используется также другой тип устройства возбуждения жидкокристаллических индикаторов. Его схема показана на рис. 5. На входы логических схем И DD2 и DD3 от внешнего генератора подаются импульсные напряжения с частотой f=l5-25 Гц, сдвинутые по фазе относительно друг друга на 180град. В зависимости от уровня управляющего сигнала на сегмент индикатора через ключ-формирователь (транзистор VT1) прикладывается напряжение прямоугольной формы, прямое либо сдвинутое по фазе. На общий электрод индикатора через другой ключ-формирователь (транзистор VT2) постоянно подается сигнал одной фазы.

При совпадении фаз на электродах сегмента последний не возбуждается; при различии фаз происходит возбуждение сегмента. Отметим, что фазовый способ управления позволяет уменьшить напряжение питания индикатора в 2 раза.

При использовании многоразрядных индикаторов требуется большое число внешних соединений, необходимых для управления сегментов. Это заставляет прибегать к созданию мультиплексного управления. На рис. 6 показан принцип управления 4-разрядным цифровым индикатором с разделенными общими электродами для каждого разряда, который заключается в объединении идентичных сегментов по всем разрядам и последовательной адресации данных в соответствующие разряды. Процесс отображения 4-разрядного числа осуществляется по тактам В каждом такте переменное управляющее напряжение прикладывается к шине управления сегментов и к линии общего электрода того разряда, который возбуждается в данном такте. Благодаря большому времен» релаксации жидких кристаллов цифры разрядов в период между тактами возбуждения продолжают читаться без приложения напряжения.

В настоящее время широкое распространение получили жидкокристаллические индикаторы (ЖКИ). От светодиодных они отличаются тем, что не излучают свет, а лишь меняют коэффициент пропускания или поглощения света на определенных участках. При этом такие участки будут выглядеть темнее, либо светлее окружающих. Они могут быть выполнены в виде сегментов, либо точек.

ЖКИ формируют изображение лишь при наличии внешнего источника света, который может располагаться как перед индикатором, так и за ним.

Работа ЖКИ индикаторов основана на использовании специальных веществ, которые называются жидкими кристаллами. Их структура имеет свойства характерные как для жидкости (возможность перемещения молекул), так и для твердых тел – упорядоченность. Чаще всего для создания цифровых ЖКИ используются вещества, обладающие нематическими свойствами. Их молекулы представляют собой длинные нити, которые могут определенным образом ориентироваться. Такая ориентация в частности происходит под действием внешнего электрического поля.

В большинстве жидкокристаллических индикаторов используется эффект вращения плоскости поляризации. Свет представляет собой поток электромагнитного излучения, причем векторы электрического и магнитного полей могут в ходе распространения луча менять свое направление в пространстве (это характерно для неполяризованного света), а могут сохранять его (в этом случае свет считается поляризованным).

Свет от обычных источников (ламп накаливания, светодиодов, солнца и т. п.) неполяризован. Однако, пропуская световой поток через особым образом обработанные прозрачные пластинки (поляризаторы) со специальной структурой внешнего слоя, можно получить свет поляризованный в том или ином направлении.

Если два поляризатора расположить так, чтобы направления поляризации совпадали (рис. 3.17), то, пройдя через первый свет поляризуется, а так как направление поляризации у второй пластинки такое же, то он пройдет и через нее. Для наблюдателя такая структура будет прозрачной.

Если один из поляризаторов повернуть на 90 градусов (рис.3.18), то пройдя первый из них и получив вертикальное направление поляризации поток света не будет пропущен второй пластинкой (поглотится), так как направление ее поляризации горизонтально, а такой компоненты в дошедшем потоке нет. При освещении внешним источником данная структура будет казаться наблюдателю темной. Если первый поляризатор выполнить в виде набора участков в виде точек или полосок, направлением поляризации которых можно управлять независимо друг от друга, то удастся формировать различные знаки и символы. Однако такой способ управления на практике не используется, так как он требует механического воздействия на соответствующие элементы индикатора. В ЖКИ для изменения направления вектора поляризации применяются жидкие кристаллы.

Упрощенная структура ячейки жидкокристаллического индикатора приведена на рис. 3.19. Между двумя поляризаторами со скрещенными направлениями поляризации помещается тонкий слой жидкого кристалла нематической структуры, молекулы которого представляют собой длинные параллельные нити. Они располагаются вдоль осей поляризации на границах пластинок и плавно меняют свое направление в области между ними.

Если на такую структуру направить поток света, то после прохождения нижней пластинники он поляризуется и будет плавно менять направление поляризации по мере распространения к верхней, так как молекулы жидкого кристалла также выполняют роль поляризатора с изменяющимся в пространстве направлением. Поэтому до второй пластинки свет дойдет уже вертикально поляризованным и пройдет ее без поглощения. Для наблюдателя данная структура будет казаться прозрачной.

Если между пластинками поляризаторов приложить электрическое поле, то молекулы жидкого кристалла вытянутся вдоль него и дополнительного поворота плоскости поляризации света не произойдет. Световой поток будет поглощаться как в слое жидкого кристалла, так и вторым поляризатором. Так как в этом случае ячейка не пропускает свет, то она будет темной.

В жидкокристаллических индикаторах электрод заднего поляризатора делается сплошным, а электроды переднего выполняются в виде сегментов или точек. Они изготавливаются на основе токопроводящих окислов металлов, тонкие пленки которых прозрачны. Жидкие кристаллы являются диэлектриками, поэтому такой индикатор представляет собой аналог конденсатора и практически не потребляет тока от источника постоянного напряжения. Для управления им требуется очень маленькая мощность, составляющая единицы и доли микроватт на ячейку. Поэтому такие индикаторы находят широкое применение в автономных системах, питающихся от встроенных источников энергии.

Особенностью жидкокристаллической ячейки является относительно большое время реакции на воздействие электрического поля. Оно составляет десятки миллисекунд, в то время как светодиодные индикаторы являются практически безынерционными.

При использовании для управления индикатором постоянного напряжения долговечность его работы оказывается невысокой. Это связано с возникновением процессов электролиза жидкого кристалла и разрушением его структуры. Чтобы избежать данного эффекта для управления используют знакопеременное напряжение с частотой десятки герц. При этом молекулы жидкого кристалла будут периодически поворачиваться вслед за изменением направления поля, ячейка останется темной, но так как каждый из электродов попеременно будет выполнять роль анода и катода, то процессы электролиза не будут успевать развиваться. Вследствие того, что частоты управляющих сигналов низки, токи через соответствующие участки индикатора, представляющие собой конденсаторные структуры будут сравнимы с токам утечки.

Однако применение двуполярного напряжения в цифровых устройствах затруднено тем, что в этом случае потребуется второй источник питания и аналоговые управляющие схемы. Поэтому данная задача решается путем использования логических элементов, выполняющих операцию суммирования по модулю два, которые могут функционировать в качестве управляемого инвертора.

Если на один из входов такого элемента подать периодический сигнал с частотой, а на другой - информационный сигнал(рис. 3.20), то напряжение на его выходе будет совпадать с периодическим сигналом при нулевом значениии окажется в противофазе с ним при единичном значении (рис. 3.21).

При этом разность потенциалов между входом на который подается периодический сигнал и выходом будет равна нулю когда
и окажется знакопеременной в случае, если
.

Для управления ЖКИ его общий электрод подключается к источнику периодического сигнала, а сегмент к выходу соответствующего элемента исключающее ИЛИ. Схема управления семисегментным индикатором в статическом режиме работы приведена на рис.3.22.

В
следствие относительно большой инерционности жидкокристаллических индикаторов реализовать рассмотренные ранее динамические системы управления не представляется возможным. Однако путем усложнения структуры ЖКИ и использования многофазных сигналов были построены динамические системы управления индикаторами сегментного и матричного типов.

В настоящее время разработаны жидкокристаллические индикаторы, сохраняющие состояние ячеек и при отключении питания.

Жидкокристаллические индикаторы широко применяются в различных устройствах для отображения символьной и графической информации. На их основе разработаны LCD (liquid crystal display) жидкокристаллические панели, представляющие собой матрицу ячеек, с возможностью независимого управления каждой из них.

Различают несколько разновидности таких панелей, в частности с пассивной (TN) и активной (TFT) матрицами. Упрощенная структура первой из них приведена на рис. 3.23. Конструктивно такая матрица представляет собой систему из двух стеклянных пластин, между которыми размещается слой жидкокристаллического вещества, а на пластины наносятся взаимно-перпендикулярные прозрачные электроды, соединенные со схемами управления столбцами C и строками R. Ячейка матрицы располагается на пересечении строки и столбца. Ее эквивалентную схему можно представить в виде совокупности резистора, конденсатора и светопропускающего клапана.

П
ри отсутствии разности потенциалов на электродах ячейки матрицы прозрачны. На панель направляется свет от специального источника и в таком состоянии она выглядит как светящийся экран. Наличие между электродами соответствующих ячеек напряжения, превышающего определенный уровень, вызывает изменение положения молекул жидкого кристалла и эти ячейки перестают пропускать свет.

В местах их расположения появляются темные точки, из которых формируется изображение. Варьируя величину управляющего напряжения можно менять степень поворота молекул и коэффициент светопропускания ячейки, что позволяет воспроизводить градации яркости.

При формировании изображения осуществляется сканирование матрицы по строкам, для чего на каждую из них поочередно подается импульс напряжения отрицательной полярности U1. Одновременно на столбцы, связанные с ячейками, которые должны изменить свое состояние поступает положительный импульс с амплитудой U2. Это условно отображено на рис. 3.23 в виде знаков +,- и 0 для нулевого уровня управляющего сигнала.

При опросе первой строки и наличии положительного напряжения на столбцах С1 и С3 происходит перезаряд конденсаторов соответствующих ячеек (Я1, Я3) до некоторого положительного напряжения. К моменту окончания импульса опроса напряжение на ячейке Я2 из-за воздействия отрицательного потенциала строки станет отрицательным, а на Я4, вследствие положительного потенциала столбца С1 изменится в положительную сторону (рис.3.24).

В следующем такте сканирования, верхние обкладки конденсаторов ячеек Я1, Я3 окажутся соединенными с корпусом и к ним будет приложено суммарное напряжение величиной
. Это вызовет перевод ячеек в непрозрачное состояние и формирование темных участков в местах их расположения. На данном интервале времени разность потенциалов на электродах ячеек Я2, Я4 недостаточна для изменения их состояния. После окончания сканирования строкиR3 изменит свое состояние ячейка Я9 и т.д. Полярность напряжения на ячейках периодически меняет знак, что не дает развиваться процессам электролиза.

LCD панель с пассивной матрицей проста по конструкции, но обладает рядом существенных недостатков. Из-за небольшого времени воздействия на ячейку напряжения превышающего пороговое (заштрихованная область на рис. 3.24) необходимо использовать жидкокристаллические материалы со значительным временем релаксации, то есть перехода после возбуждения в первоначальное состояние. Это не позволяет отображать быстроменяющиеся сцены. Кроме того, наличие остаточного напряжения на ячейках приводит к невысокой контрастности изображения, определяемой отношением яркости полностью затемненной и прозрачной ячеек. Еще одним недостатком является наличие связи между ними, что вызывает смазывание динамически меняющихся изображений. В настоящее время такие панели практически полностью вытеснены активными с тонкопленочными управляющими полевыми транзисторами.

Структура активной TFT (thin film transistor) матрицы и упрощенные временные диаграммы ее работы приведены на рис. 3.25 и рис. 3.26. Здесь работой каждой ячейки управляет полевой транзистор, изготовленный по тонкопленочной технологии и размещенный на индикаторной панели. Затворы транзисторов соединяются со строками матрицы, а истоки со столбцами.

В

момент поступления положительного импульса на строку открываются транзисторы, связанные с ячейками данной строки. Конденсаторы тех ячеек, которые должны изменить свое состояние заряжаются под действием напряжения, подаваемого на соответствующие столбцы. При переходе к следующей строке, транзисторы предыдущей закрываются, а так как ячейка практически не потребляет тока, то ее состояние остается неизменным до следующего цикла сканирования, то есть в течение кадра.

Для того, чтобы предотвратить деградацию участков жидкого кристалла вследствие электролиза, напряжение на них должно периодически менять знак. С этой целью через кадр полярность импульсов, поступающих на столбцы меняется на противоположную.

В такой матрице ячейки (пиксели) оказываются электрически изолированными друг от друга, что обеспечивает хороший контраст изображения. Сохранение напряжения после снятия управляющего воздействия позволяет использовать жидкокристаллические вещества с малым временем релаксации. Это обеспечивает небольшое время отклика панели и возможность воспроизведения быстроменяющихся изображений.

В цветных LCD панелях каждый пиксель выполняется на основе трех независимо управляемых ячеек с соответствующими светофильтрами. При сложении красного, синего и зеленого цветов с различными интенсивностями формируются вся цветовая гамма в видимом диапазоне.

Н
овым направлением в системах отображения информации, работающих на отражение является использование так называемых электронных чернил. Базовыми элементами дисплеев на их основе являются микрокапсулы, внутри которых находятся окрашенные частицы двух цветов – белые, заряженные положительно и черные с отрицательным зарядом (рис. 3.27). Внутреннее пространство микрокапсулы заполнено прозрачной жидкостью.

Слои микрокапсул расположены между двумя рядами взаимно перпендикулярных электродов строк и столбцов, верхние из которых прозрачны. При подаче разности потенциалов на строку и столбец, в точке их пересечения возникает электрическое поле. Окрашенные частицы собираются у электрода с противоположным знаком потенциала. При этом соответствующая точки изображения (пиксел) окрасится в черный, либо в белый цвет, так как пигментные частицы, сгруппировавшиеся в верхней части микрокапсулы, скроют от наблюдателя нижний слой.

Дисплеи на базе электронных чернил, которые часто называются цифровой бумагой, способны сохранять изображения и при отсутствии питания, подача напряжения необходима лишь для изменения состояния пиксела. В качестве подложки используются: стекло, пластик, металлическая фольга и другие материалы. Такие устройства могут быть сделаны гибкими и имеют очень малую толщину.

В настоящее время недостатками устройств отображения на базе электронных чернил являются большое время переключения пиксела (0,5 – 1 сек.) и ограниченное количество воспроизводимых оттенков серого.

Контрольные вопросы.

    С какой целью последовательно со светодиодом при его подключении к источнику напряжения устанавливается резистор?

    Какова скважность восьмиразрядных систем динамической индикации, функционирующих по методу компарации и мультиплексирования?

    Сколько внешних выводов у светодиодной матрицы размером 5×7?

    В каком случае система скрещенных поляризаторов будет прозрачной – при наличии, либо при отсутствии жидкокристаллического вещества между ними?

    Чем обусловлена необходимость двуполярного напряжения для управления ЖКИ?

    Чем объясняется более высокая контрастность активной ЖКИ панели по сравнению с пассивной?

Новое на сайте

>

Самое популярное