Домой Кредиты онлайн Большая энциклопедия нефти и газа.

Большая энциклопедия нефти и газа.

Породы-коллекторы

Основные параметры коллекторов

Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать их в промышленных количествах при разработке, называются коллекторами. Большинство пород-коллекторов имеют осадочное происхождение. Коллекторами нефти и газа являются терригенные (песчаники, алевролиты и некоторые глинистые породы), карбонатные (известняки, доломиты), кремнистые (радиоляриты, спонголиты) породы. В редких случаях коллекторами могут служить изверженные и метаморфические породы. Характер пустотного пространства в породах определяется текстурными особенностями породы, размерами и формой минеральных зерен, составом цемента, способностью пород к трещиноватости.

Основными параметрами коллекторов является пористость и проницаемость.

Пористостью называется доля пустотного пространства в общем объеме породы. Величина пористости может быть выражена в процентах или долях единицы.

Различают общую, открытую и эффективную пористость. Общая (полная, абсолютная) пористость - это объем всех пор в породе.

При промышленной оценке залежей нефти и газа принимается во внимание открытая пористость - объем только тех пор, которые связаны, сообщаются между собой.

В нефтяной геологии наряду с понятиями общей и открытой пористости существует понятие эффективной пористости, которая определяется наличием таких пор, из которых нефть может быть извлечена при разработке. Неэффективными считаются субкапиллярные и изолированные поры.

Другим важным параметром, характеризующим фильтрационные свойства пород-коллекторов, является проницаемость - свойство пород пропускать сквозь себя жидкости и газы. Проницаемость выражается в долях квадратного метра. Обычно проницаемость, измеренная параллельно слоистости, выше проницаемости, определенной перпендикулярно к напластованию.

Различают несколько видов проницаемости: абсолютную, фазовую (эффективную) и относительную .

Абсолютная проницаемость - проницаемость, измеренная в сухой породе при пропускании через неё сухого инертного газа (азота, гелия); часто она измеряется по воздуху.

Фазовая (эффективная) проницаемость - способность породы пропускать через себя один флюид в присутствии других; для отдельных флюидов зависит от их количественного соотношения. Особенно это заметно при разработке месторождения. При откачке и уменьшении количества нефти в пласте ее фазовая проницаемость постепенно падает.

Относительная проницаемость - отношение величины эффективной проницаемости данного флюида к величине проницаемости при 100 % насыщении породы данным флюидом. Она непрерывно меняется при эксплуатации залежи, т. к. меняется соотношение флюидов. Относительная проницаемость породы для любого флюида возрастает с увеличением ее насыщенности этим флюидом.

Пластовые флюиды - нефть, газ, вода - аккумулируются в пустотном пространстве породы-коллектора, представленном порами, кавернами и трещинами. По преобладающему виду пустот породы-коллекторы делятся на поровые, кавернозные, трещинные и биопустотные .

Поровыми (гранулярными) являются в основном песчаноалевритовые породы и некоторые разности карбонатных - оолитовые, обломочные известняки. Пустоты коллекторов представлены порами, размеры их не превышают 1 мм (рис. 89).

Рис. 89. Поровые коннекторы

Трещинными коллекторами могут быть осадочные породы, изверженные и метаморфические. Трещины определяют главным образом проницаемость этих образований. В качестве трещинных коллекторов среди осадочных пород чаще всего выступают карбонатные, но бывают и песчаноалевритовые и даже глинистые, которые ранее могли являться и нефтепроизводящими (рис. 90).

Рис. 90. Трещинные коллекторы

Кавернозные коллекторы чаще всего связаны с зонами выщелачивания с образованием пустот (каверн) в карбонатных толщах. Размеры каверн превышают 1 мм. Пустотное пространство образуется также при метасомагическом замещении кальцита доломитом (рис. 91).

Рис. 91. Кавернозные коллекторы

Биопустотные коллекторы связаны с органогенными карбонатными и кремнистыми породами, пустоты носят внутрискелетный и межскелетный характер (рис. 92).

По времени формирования все виды пустот могут быть первичные, образовавшиеся вместе с породой, и вторичные, образовавшиеся уже в готовой породе. Поры чаще бывают первичные, а каверны и трещины - вторичные. В карбонатных породах могут существовать еще реликтовые пустоты, например, пустоты раковин.

Рис. 92. Биопустотные коллекторы

Влияние постседиментационных процессов на изменение пустотного пространства

После завершения седиментации пористость образовавшегося песчаного осадка называется гипергенно-седиментационной. Последующие процессы диагенеза и катагенеза (уплотнение, цементация, регенерация) способствуют уменьшению, сокращению свободного порового пространства (рис. 93).

Рис. 93. Сокращение норового пространства в песчаниках за счет вторичных процессов. Шлифы

Наряду с уменьшением пористости пород на глубине иногда развиваются процессы, которые способствуют увеличению порового пространства: растворение, выщелачивание, перекристаллизация, образование трещин, метасоматоз (рис. 94).

Рис. 94. Процессы, способствующие формированию вторичной пористости в породах-коллекторах. Шлифы

Породы-флюидоупоры

Сохранение скоплений нефти и газа в породах-коллекторах невозможно, если они не будут перекрыты непроницаемыми для флюидов (нефти, газа и воды) породами - флюидоупорами (покрышками, экранами). Лучшими покрышками считаются соленосные толщи, но наиболее распространены в этом качестве глины.

Экранирующие свойства глин зависят от их состава, мощности и выдержанности, песчанистости или алевритистости, вторичных изменений, трещиноватости. Большое значение также имеют находящиеся в глинах вода и органическое вещество.

Важнейшим качеством глин для формирования экранирующих свойств является пластичность - важнейшее качество глин, обеспечивающее способность к перестройке структуры под влиянием приложенной нагрузки без нарушения сплошности сложенного глинами пласта. Она исключает механическое разрушение при прорыве нефти и газа под избыточным давлением (до определенного предела). Однако при росте давления в течение достаточно продолжительного времени предел пластичности может быть пройден, глина становится ломкой и хрупкой и теряет свои экранирующие свойства.

Соли, гипсы и ангидриты являются покрышками, хотя сквозь их толщу проходит медленный, но постоянный поток углеводорода. Более пластичные покрышки каменной соли являются лучшими по качеству, чем ангидриты и гипсы. С увеличением глубины возрастает пластичность солей и сульфатных пород, в связи с чем улучшаются и их экранирующие свойства.

Покрышки, относящиеся к разряду плотностных, образуются обычно толщами однородных монолитных, лишенных трещин тонкокристаллических известняков , реже доломитов , мергелей , аргиллитов. Карбонатные покрышки характерны для нефтяных залежей платформенных областей, для условий пологого залегания пород.

По площади распространения различаются региональные, зональные и локальные покрышки. Региональные покрышки имеют широкое площадное распространение, характеризуются значительной мощностью и литологической выдержанностью. Они обычно выдерживаются в пределах отдельных нефтегазоносных областей. Зональные покрышки бывают выдержаны как минимум в пределах одной зоны нефтегазонакопления. Локальные покрышки имеют ограниченное распространение, часто занимают площадь одного или нескольких месторождений. Они обусловливают сохранность отдельных залежей и характер их распределения в разрезе месторождения.

Карбонатные покрышки часто ассоциируются с кабонатными же коллекторами, границы между ними имеют весьма сложную поверхность. Для

карбонатных покрышек характерно быстрое приобретение ими изолирующей способности (в связи с быстрой литификацией и кристаллизацией карбонатного осадка). Для плотностных покрышек большое значение имеет мощность, увеличивающая в целом крепость пород.

Плотностные покрышки теряют свою герметичность на больших глубинах за счет появления трещин механического образования.

Свойства коллекторов нефти и газа. Типы коллекторов нефти и газа

Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать их при разработке, называются коллекторами . На формирование геометрии порового пространства коллекторов и, следовательно, на их филь­трационные характеристики влияют структура и текстура пород.

Структура осадочных горных пород - размеры и форма слагающих породу минеральных зерен или условных неделимых (биоморфных или детритовых остатков, скелетов организмов, оолитов и т. п.).

Текстура - характер взаимного расположения компонентов породы и их пространственная ориентация. Емкостное пространство включает емкости двух видов: седиментационные и постседиментационные, в кото­рых все изменения протекают с разной интенсивностью, опреде­ляемой в первую очередь типом коллектора.

1 Пустотность (пористость ) – наличие в горной породе пустотного пространства. Пустотное пространство определяется размерами, конфигурацией, укладкой частиц, слагающих породу и образующих поры, наличием в порах цементирующих веществ, а также трещин и каверн.

Под пористостью понимают пустотность породы-коллектора.. Для характеристики пористости употребляется коэффициент, который показывает, какую часть от общего объема породы составляют поры.

По размерам все поры делятся на сверхкапиллярные (> 508 мкм), капиллярные (508-0,2 мкм) и субкапиллярные (<0,2 мкм).

В сверхкапиллярных порах движение воды подчинено законам гидравлики. Вода, нефть и газ в них свободно перемещаются под дей­ствием гравитационных сил. В капиллярных порах движение жидкости затруднено вследствие проявления сил молекулярного сцепления. Субкапиллярные поры характерны для глинистых пород, которые являются водо- и нефтегазоупорными. Фильтрация воды по таким породам невозможна.

Различают общую, открытую и эффективную пористость.

Общая (полная, абсолютная) пористость - это объем всех пор в породе. Соот­ветственно коэффициент общей пористости представляет собой отно­шение объема всех пор V п к объему образца породы V обр

m п = V п / V обр

При промышленной оценке залежей нефти и газа принимается во внимание открытая пористость – объем только тех пор, которые связаны, сообщаются между собой. Она характеризуется коэффициентом открытой пористости – отношением суммарного объема открытых пор V о.п. к объему образца породы V обр:

m о = V о.п. / V обр

Эффективная пористость – пористость, которая оп­ределяется наличием таких пор, из которых нефть может быть извлечена при разработке. Неэффективными считаются субкапиллярные и изолированные поры. Коэффициент эффективной пористости неф­тесодержащей породы равен отношению объема пор, через которые возможно движение нефти, воды или газа при определенных температуре и градиентах давления V э, к объему образца породы V обр:

m э = V э / V обр

Для характеристики двух- или трёхфазных систем применяется понятие динамической пористости . Коэффициент динамической пористости определяется отношением объема движущейся в породе жидкости V д к объему образца V обр:

m д = V д / V обр

Динамическая пористость всегда ниже эффективной, поскольку в эффективный объем пор включается также объем неподвижных жидкостей и газов, удерживаемых поверхностно-молекулярными силами.

2 Кавернозность - наличие в горной породе пустот непра­вильной или округлой формы размером более 1 мм. Она харак­теризуется коэффициентом кавернозности, равным отношению суммарного объема всех каверн V к к объему образца породы V обр

m к = V к / V обр

3 Гранулометрический состав горной породы харак­теризует количественное содержание в ней частиц различной ве­личины. Гра­нулометрический состав влияет на особенности эксплуата­ции нефтесодержащнх коллекторов, нефтеотдачу и различные био­химические процессы в продуктивных пластах.

По размеру частиц (мм) породы разделяются на три группы: пески или псаммиты 1-0,1; алевриты 0,1-0,01; пелиты менее 0.01. Породы относятся соответственно к псаммитам, алевритам или пелитам, если содержат по 50- 80 % частиц той или иной группы.

Для определения гранулометрического состава керн породы освобождают от нефти и воды. Для этого его помешают в экст­ратор и обрабатывают определенными растворителями. Гранулометрический состав таких пород, как пески, рыхлые песчаники и другие, легко распадающиеся на составляющие зерна, определяют ситовым анализом. В практике для гранулометриче­ского анализа применяют сита с отверстиями 1.0; 0,5; 0,25: 0,1 мм. реже - 0,04 мм. Еще более мелкие частицы разделяются гидрав­лическими методами.

4Трещиноватость - наличие в породе трещин. Тре­щины – это разрывы в горной породе (без перемещения блоков породы), характеризующиеся раскрытостью от десятков микрон до миллиметров, преимущественно тектонического происхожде­ния. Раскрытость трещин позволяет приближенно оценить величины трещинной пустотности и трещинной проницаемости.

5 Проницаемость - способность породы пропускать через себя жидкости и газы (при наличии перепада давления). Она ко­личественно характеризует фильтрационные свойства коллектора.

Для оценки абсолютной проницаемости горных пород обычно используют линейный закон фильтрации Дарси:

Согласно этому закону проницаемость k пр – константа пропор­циональности, характеризующая пористую среду, причем в иде­альном случае она не зависит от типа фильтруемой жидкости.

При движении через образец неоднородной жидкости, пред­ставленной несколькими фазами (газ-вода, нефть-вода, газ- нефть, газ-нефть-вода), величины проницаемости, определяе­мые по фильтрации каждой из фаз, будут отличаться от абсолют­ной проницаемости и одна от другой. Различают эффективную (фазовую) проницаемость для данного газа или жидкости при одновременном присутствии в порах другой фазы - жидкой или газообразной. Она изменяется в зависимости от характера фазы, температуры и давления н выражается в относительных еди­ницах.

Отношение величины эффективной проницаемости к абсолют­ной называется относительной проницаемостью породы.

6 Коэффициентом водо-, нефте-, газонасыщенности (k в, k н, k г) называется отношение объема воды, нефти или газа (V в, V н, V г),содержащихся в пустотном пространстве породы, к объему пустот (V п): k в = V в / V п; ka= V н / V п; k r = V г / V п.

Сумма коэффициентов насыщенности породы нефтью, водой и газом равна единице. Обычно коэффициенты нефте- и газонасыщенности определяют по коэффициенту водонасьаценности А в, исходя из соотношения k н(г) =1– k в.

7 Удельная поверхность г.п . – суммарная поверхность частиц или поровых каналов содержащихся в ед. объема образца.

T – суммарная поверхность частиц, либо поровых каналов в образце [м 2 ]

V – объем образца

8 Механические свойства г.п.:

1) Упругость г.п.

2) Прочность на и разрыв

3) Пластичность г.п.

Упругие свойства г.п. На состояние пласта, режим его работы, существенное влияние могут оказывать упругость коллектора и содержащиеся в нем флюиды. Если пластовое давление падает, то Н и В в пласте расширяются, а поровые каналы сужаются, в следствие того, что внешнее давление на пласт остается постоянным, а внутреннее уменьшается.

Упругую энергию г.п. принято характеризовать коэффициентами сжимаемости.

Коэффициент сжимаемости пласта, коэффициент сжимаемости пор, коэффициент сжимаемости поровой среды.

Пластические свойства г.п. – при упругих деформациях зерна породы и цементирующей материал. При увеличении давления свыше предела упругости (прочности), цементирующий материал разрушается, зерна породы смещаются относительно друг друга, плотность упаковки увеличивается до исчезновения пустот в г.п. (для пород гранулярного типа).

Под прочностью г.п. понимают их сопротивление механическому разрушению. Прочность пород на сжатие во много раз превышает прочность на разрыв.

9 Тепловые свойства г.п.

1) Удельная теплоемкость

2) Коэффициент теплопроводности

3) Коэффициент температуропроводности

4) Коэффициент линейного и объемного расширения

Коллекторы классифицируются по целому ряду признаков, поэтому имеется множество различных их классификаций. Наиболее важными классификационными критериями являются:

Тип емкости;

Литологический состав.

Величина пористости;

Величина проницаемости.

Классифакация коллекторов по типу емкости:

1 Поровый

2 Трещинновый

3 Каверновый

4 Трещинно-поровый

5 Трещинно-порово-каверновый

6 Каверно-поровый

Классификация коллекторов по литологическому составу :

Наиболее распространенные коллекторы нефти и газа - терригенные и карбонатные породы.

Терригенные породы-коллекторы представлены в основном пе­счаниками и алевролитами. Основные их показатели - грануло­метрический состав, форма и характер поверхности минеральных зерен.

Карбонатные породы-коллекторы представлены известняками и доломитами. Формирование их емкостей определяется как гене­зисом, так и особенностями постседиментацнонных преобразова­ний, в первую очередь трещиноватостью и последующим выщела­чиванием пород. Развитие трещиноватости в карбонатных поро­дах обусловлено литологическими особенностями пород.

Классификация коллекторов по величине пористости:

Классификация коллекторов по величине проницаемости:


Основная часть нефтяных и газовых месторождений приурочены к осадочным породам - обломочным, органогенным и хемогенным.

Обломочные породы - коллекторы образуются за счет разрушения прежде существовавших горных пород - мXагматических и магматические.

Обломочные делятся на:

1. терригенные

рыхлые: сцементированные:

песок > 0,1 мм песчаник

алеврит 0,1 - 0,01 алевролит

глина < 0,01 аргиллит

Частицы разрушенных г.п. могут быть сцементированы глинистым и карбонатным цементом. Если цемент глинистый, то при бурении водоотдача должна быть минимальной, если водоотдача повышеннная, то глины будут набухать и проницаемость пласта будет падать и обусловит длительное освоение скважин и низкие дебиты.

Для повышения дебитов принимают глинокислотные обработки, растворяющие цемент и увеличвающие проницаемость.

Если цемент карбонатный, то применяют солянокислотные обработки. Большинство коллекторов месторождений Западной Сибири являются терригенными.

Обломочные карбонатные породы - это обломки известняка, доломита, карбонатных зерен...

Коллектора из карбонатных породов представлены в Вольго-Уральской и Тиманопечерских провинциях.

Органогенные породы - коллекторы - это известняки биогенные из останков животных и растительных организмов т.е. рифовые образования.

Это месторождения уралоповолжья, украины, белоруссии, ближнего и среднего востока, индонезии, брунея, венесуэлы, мексики, пермской области.

Хемогенные породы-коллекторы - известняки и доломиты, образующиеся из-за химических реакций при сносе в море солей, кальция и магния.

В пордах коллекторах выделяют Поры:

Первичные поры (образованы в ходе осадконакопления):

Структурные (между частицами зерен пород)

Поры между плоскостями пород

Биогенные пороы при разложении органики

Межгранулярные и межкристаллические

вторичные:

как результат выщелачивания, перекристаллизации, доломитизации и эрозионных процессов.

Первичные поры обычно заполнены остаточной или связанной водой, сохранившейся в породе. Вторичные поры содержат нефть и газ.ы

Неколлекторные породы – это породы, которые не отдают нефть и газы. Коллекторы – накапливающие и отдающие нефть, газ и воду.ы

Итоги исследования щлама и керна увязывают с данными ГИС, результатами испытаний и гидродинамических исследованиях. Наиболее пористые трещиноватые породы насыщенные УВ в процессе отбора разрушаются. В ЗС коллекторы определяются в основном по ГИС. Продуктивные пласты характеризуются отрицательными аномалиями кажущегося сопротивления и уменьшением диаметра скважин на кавернометрии.

37. Методика выделения коллекторов в терригенном в разрезе. Продуктивные пласты характеризуются отрицательными аномалиями кажущегося сопротивления горных пород (нефть и газ ток не проводят) и уменьшением диаметра скважин на кавернометрии.

Кавернометрией определяется диаметр скважин

При бурении глинистый раствор отфильтровывается в пласт и на поверхности интервала образуется глинистая корка и диаметр уменьшается.

38 . В карбонатных коллекторах три методы выделения из-за сложного строения: нефтегаз в порах, кавернах и трещинах.

Каротаж – испытание – каротаж.

Замер удельного электрического сопротивление до и после испытания позволяют выделять нужные интервалы.

После получения притоков сопротивление больше.

Метод двух растворов: сперва замеряют электрическое сопротивление, когда скважина заполнена буровым раствором, затем его меняют на воду и снова определяют сопротивление.

Вода обладает электропроводностью и проникает в пласть и сопротивление будет уменьшаться.

Совместное использование НГК и АГК. Методом НГК определяют общую пустотность пород: поры, каверны и трещины. АГК – только трещины. Так выделяется коллектор.

39. Породы коллекторы обнаруживаются также по увеличению скорости бурения, проходки на долото, провалы инструмента, поглощению бурового раствора, нефтегазоводопроводимости тк коллекторы пористые и проницаемости.

41. ФЕС характеризуется пористостью, кавернозностью и трещиноватостью.

Поры - это пустоты с диаметром < 2 мм

Виды пористости - полная, характеризуется сообщающимися и несообщающимися порами К п = V пор\V образца породы * 100 = %

Несообщающиеся поры не отдают нефть и газ.

открытая (только сообщающиеся поры). Юзается при подсчете запасов и составлении проектов разработки. К оп = (вес сухого образца керна - вес насыщенного керосином под вакуумом в воздухе образца) /(вес насыщенного керосином под вакуумом в воздухе образца - вес насыщенного керосином образца в керосине)

По размерам поры:

сверхкапиллярные = 2 - 05 мм

капиллярные = 05 - 0,0002

субкапиллярные < 0,0002

Сверх и просто капиллярные могут быть нефтегазоносны, а суб иметь остаточную воду.

Максимум открытой пористости - это около 30-40 процентов.

В ЗС наиболее часто встречается Кпо = 15-17%

К по = 10 - 17% - это трудноизвлекаемые запасы.

Для добычи нефти и газа бурят горизонтальные скважины, боковые стволы, проводят гидроразрыв пласта.

Если коэфициент открытой пористости < 10%, то залежи нерентабельны и исключаются из подсчета запасов.

В карбонатных коллекторах нефть и газ в трещинах и нижние пределы пористости 2-3%, и только с меньшей - нерентабельны.

Кавернозность. Пустоты с диаметром больше 2 мм. Каверны образуются в процессе отложения известняков в рифах и при разложении ОВ и циркуляции пластовых вод. При подсчете запасов учитывают по коэффициент кавернозности.

Каверны образуются в процесе отложения известняков в рифах и при разложении ОВ и при циркуляции пластовых вод.

К кавернозности = объем каверн \ объем пор * 100 = %

При наличии каверн и трещин дебиты на два-три порядка выше, ибо проницаемость в 100-1000 раз больше.

Трещиноватость.

Макротрещины > 40-50 мм

Микротрещины < стольки же

При бурении породы разрушаются, поэтому можно изучать только микротрещины. Т.к. основные запасы в трещинах, то трещиноватость изучают по промысловым данным с помощью фотокаратожа и телекамер.

При наличии трещин большие дебиты.

Проницаемость.

П - способность породы пропускать через себя нефть, газ или воду.

По формуле Дарси к пр = (расход флюида через образец * вязкость флюида * длина образца)\(площадь поперечного сечения образца*разница давлений на входе и выходе)

Максимальная проницаемость достигает 2-5 Дарси.

Проницаемость в ЗС обычно 0,05 - 0,5 мкм2

Если проницаемость меньше 0,05 то запасы трудноизвлекаемы. Для добычи трудноизвлекаемых проводят гидроразрыв.

42. Неоднородность, её виды и количественная оценка

Коллектора месторождений в Западной Сибири имеют высокую степень неоднородности.

Неоднородность - широкое изменение вещественного состава и коллекторских свойств по площади и по разрезу.

Есть два вида неоднородности:

Макронеоднородность

Изменение толщин продуктивных пластов и разделяющих непроницаемых прослоев. Изучают по структурным картам общих и нефтяных толщин.

h общ - толщина пласта от кровли до подошвы

h общ - h эфф = h коллектора

h н г = толщина прослоек

Для характеристик параметров строят карты общих эффективных толщин. Изучают по детальным геопрофилям.

Микронеоднородность - изменение коллекторских свойств по площади, по разрезу.

Микронеоднородность характеризуется коэффициентом песчанистости. К песч = h эфф\h общ= 0 - 1

Если 1-0,7 - то высокопрододуктивная


КОЛЛЕКТОР нефти и газа, горная порода, способная вмещать жидкие, газообразные углеводороды и отдавать их в процессе разработки. Коллекторы подразделяются на промышленные, из которых возможно получение достаточных по величине притоков флюидов, и непромышленные, из которых получение таких притоков на данном этапе невозможно. Нижние пределы параметров коллекторских свойств (проницаемости и полезной ёмкости), определяющие промышленную оценку коллектора, зависят от состава флюида (для газа в связи с его подвижностью они значительно ниже, чем для нефти) и типа коллектора (поровый, биопустатный, кавернозный, трещинный или смешанный).

Формирование коллектора начинается со стадии седиментогенеза породы. Степень сохранности седиментационных признаков зависит, прежде всего, от минерального состава породообразующей части (матрицы) коллектора, минерального состава и формы распределения в поровом пространстве цемента, а также от мощности коллектора. Постседиментационная эволюция коллектора определяется новыми признаками, формирующимися под влиянием увеличивающихся давления и температуры, повышения концентрации флюидов, перераспределения цементирующего материала, изменения структуры пустотного пространства, растворения неустойчивых и образования стабильных минералов. Изменения протекают с разной интенсивностью, определяемой в первую очередь литологическим типом породы.

Наиболее распространены терригенные и карбонатные коллекторы, с которыми связаны основные извлекаемые запасы углеводородов, реже встречаются глинисто-кремнисто-битуминозные, вулканогенные и вулканогенно-осадочные, магматические и др.

Основной масса терригенных коллекторов относится к поровому типу, характеризующемуся межзерновым пустотным пространством, их называют межзерновыми (гранулярными); встречаются также коллекторы со смешанным характером пустотного пространства (трещинно-поровые и даже кавернозно-поровые разности - если часть зёрен сравнительно легко выщелачивается). Свойства терригенных коллекторов зависят, прежде всего, от гранулометрического состава, формы и характера поверхности, слагающих породу зёрен, степени их отсортированности, окатанности, вида упаковки обломочных зёрен; количества, состава и типа цемента. Эти параметры обусловливают геометрию порового пространства, определяют величины эффективной пористости, проницаемости, принадлежность пород к различным классам коллекторов порового типа. На фильтрационную способность терригенных коллекторов влияет также количество, минеральный состав и характер распределения глинистой примеси, снижающей проницаемость. Среди множества классификаций терригенных коллекторов наиболее популярная построена с учётом их гранулометрического состава, эффективной пористости и проницаемости. По этим параметрам различают шесть классов терригенных коллекторов с проницаемостью соответственно свыше 1000 мД (миллидарси), 1000-500, 500-100, 100-10, 10-1 и менее 1 мД (1 мД≈ 1·10 -3 мкм 2). Каждому типу песчано-алевритовых пород в пределах того или иного класса соответствует своя величина эффективной пористости. Породы, относящиеся к классу с проницаемостью менее 1 мД, в естественных условиях обычно содержат 90% и более остаточной воды и не являются коллекторами промышленного значения. Лучшими фильтрационными свойствами обладают кварцевые пески вследствие низкой сорбционной способности кварца. Наличие трещин спайности и таблитчатый габитус (облик) большинства минералов, слагающих полимиктовые песчаники, а также их более высокая сорбционная ёмкость значительно снижают коэффициент фильтрации флюидов.

Для карбонатных коллекторов характерен наиболее широкий спектр типов: гранулярные (оолитовые и обломочные известняки), трещинные (плотные известняки и доломиты), кавернозные (результат карста), биопустотные (органогенные известняки). Особенности карбонатных коллекторов - ранняя литификация, избирательная растворимость, склонность к трещинообразованию - обусловили большое разнообразие морфологии и генезиса пустот. Качество карбонатных коллекторов определяется первичными условиями седиментации, интенсивностью и направленностью постседиментационных преобразований, за счёт влияния которых развиваются дополнительные поры, каверны, трещины и крупные полости выщелачивания. Карбонатные коллекторы характеризуются крайней невыдержанностью свойств и их значительным разнообразием в зависимости от фациальных условий образования, что затрудняет их сопоставление. Фациальные условия образования карбонатных пород в большей мере, чем в терригенных, влияют на формирование коллекторских свойств. По минеральному составу карбонатные породы менее разнообразны, чем терригенные, но по структурно-текстурным характеристикам имеют гораздо больше разновидностей. Влияние вторичных преобразований особенно велико в породах с первично неоднородной структурой порового пространства (органогенно-обломочные разности). По характеру постседиментационных преобразований карбонатные породы отличаются от терригенных, прежде всего степенью уплотнения. Остатки биогермов с самого начала представляют практически твёрдые образования, и далее уплотнение идёт уже медленно. Карбонатный ил и мелкообломочные, комковато-водорослевые карбонатные осадки быстро литифицируются, пористость несколько сокращается, но значительный объём порового пространства «консервируется». Трещиноватость, как правило, составляющая в породах 0,1-1%, в карбонатных коллекторах может достигать 1,5-2,5%. При значительной мощности трещиноватых продуктивных горизонтов ёмкость трещин имеет существенное значение для оценки полезного объёма пластов. Дополнительная ёмкость карбонатных коллекторов трещинного типа создаётся также стилолитовыми швами, образование которых связано с неравномерным растворением под давлением. Глинистая корочка на поверхности стилолитовых швов представляет нерастворимый остаток породы. Часто горизонты развития стилолитов являются наиболее продуктивными в разрезе, что обусловлено вымыванием глинистых корочек. Наиболее значительные запасы углеводородов сосредоточены в кавернозно-поровом и поровом типах карбонатных коллекторов. Лучшими карбонатными коллекторами являются рифовые известняки, из которых были получены и рекордные дебиты нефти (десятки тысяч тонн в сутки).

В глинисто-кремнисто-битуминозных коллекторах преобладают трещинные и порово-трещинные типы. Породы характеризуются значительной изменчивостью минерального состава, неодинаковой обогащённостью органическим веществом. Микрослоистость, развитие субкапиллярных пор и микротрещиноватость обусловливают относительно низкие фильтрационно-ёмкостные свойства. В некоторых разностях пористость достигает 15% при проницаемости в доли мД. В таких породах участки с повышенной пористостью и проницаемостью разнообразной формы возникают в процессе катагенеза (синхронно с генерацией нефтяных и газовых углеводородов и перестройкой структурно-текстурных особенностей минеральной матрицы породы). Считают, что в седиментогенезе образуются микроблоки породы, покрытые плёнкой сорбированного органического вещества. Колломорфный кремнезём, обволакивая агрегаты глинистых минералов, создаёт на их поверхности сложные комплексы с участием органического вещества и кремнезёма (возникают так называемые кремнеорганические рубашки). Процессы трансформации глинистых минералов и выделения связанной воды приводят к образованию мелких послойных трещин. Отдельные участки породы вследствие роста внутреннего давления пронизываются системой трещин вдоль поверхности «рубашек». При вскрытии таких коллекторов, как правило, отмечаются разуплотнение и аномально высокое пластовое давление. Повышению трещиноватости породы способствуют и тектонические процессы. При отборе нефти из таких пород трещины смыкаются - это коллекторы «одноразового использования». В них нельзя закачать газ или нефть, как это делают при строительстве подземных хранилищ в других типах пород.

Среди вулканогенных и вулканогенно-осадочных коллекторов наиболее часто встречаются трещинный и порово-трещинный типы. Эти коллекторы отличаются большой ролью трещиноватости, резкой изменчивостью свойств в пределах месторождения. Нефть и газ в туфах, лавах и других разностях связаны с пустотами, которые образовались при выходе газа из лавового материала, или с вторичным выщелачиванием и трещиноватостью. Нефтеносность этих пород всегда вторична. Особенность таких коллекторов заключается в несоответствии между сравнительно низкими величинами ёмкости, проницаемости и высокими дебитами скважин, вскрывающих залежи в этих породах.

Формирование коллекторов в магматических и метаморфических породах связано с метасоматозом и выщелачиванием в результате гидротермальной деятельности, контракцией (усадкой) при остывании породы, дроблением по зонам тектонических нарушений. Основной объём пустот в магматических коллекторах принадлежит микротрещинам и микрокавернам. Пористость пород в большинстве случаев не превышает 10-11%. Проницаемость матрицы невысока, но в результате развития кавернозности и трещиноватости в целом проницаемость достигает сотен мД.

Выявление коллекторов нефти и газа проводится комплексом геофизических исследований скважин и анализом лабораторных данных с учётом геологической информации по месторождению. При изучении карбонатных коллекторов, кроме традиционных литологических и промыслово-геофизических методов, используют фото и ультразвуковой каротаж, метод капиллярного насыщения пород люминофорами и др.

Лит.: Справочник по геологии нефти и газа / Под редакцией Н. А. Еременко. М., 1984; Геология и геохимия нефти и газа / Под редакцией Б. А. Соколова. 2-е изд. М., 2004.

КОЛЛЕКТОРЫ НЕФТИ И ГАЗА (от cp.-век. лат. соllector — собиратель * а. oil and gas reservoirs; н. Erdol-Erd gasspeichergesteine, Erdol- und Gasspeicher; ф. roches-reservoirs de petrole et de gaz, roches-magasins de petrole et de gaz; и. rocas reservorios de gas у petroleo) — горные породы , способные вмещать жидкие, газообразные углеводороды и отдавать их в процессе разработки . Критериями принадлежности пород к коллекторам и служат величины проницаемости и ёмкости, обусловленные развитием , трещиноватости , кавернозности. Величина полезной для нефти и газа ёмкости зависит от содержания остаточной водонефтенасыщенности. Нижние пределы проницаемости и полезной ёмкости определяют промышленную оценку пластов , она зависит от состава флюида и типа коллектора.

Долевое участие пор, каверн и трещин в фильтрации и ёмкости определяет тип коллектора нефти и газа: поровый, трещинный или смешанный. Коллекторами являются породы различного вещественного состава и генезиса: , глинисто-кремнисто-битуминозные, и другие.

Коллекторские свойства терригенных пород зависят от гранулометрического состава , сортированности, окатанности и упаковки обломочных зёрен скелета, количества, состава и типа цемента. Эти параметры обусловливают геометрию порового пространства, определяют величины эффективной пористости, проницаемости, принадлежность пород к различным классам порового типа коллекторов. Минеральный состав глинистой примеси, характер распределения и количество её влияют на фильтрационную способность терригенных пород; увеличение глинистости сопровождается снижением проницаемости.

Коллекторские свойства карбонатных пород определяются первичными условиями седиментации , интенсивностью и направленностью постседиментационных преобразований, за счёт влияния которых развиваются поры, каверны, трещины и крупные полости выщелачивания . Особенности карбонатных пород — ранняя литификация , избирательная растворимость и выщелачивание, склонность к трещинообразованию обусловили большое разнообразие морфологии и генезиса пустот; они проявились в развитии широкого спектра типов коллекторов нефти и газа. Наиболее значительные запасы углеводородов сосредоточены в каверново-поровом и поровом типах.

Вулканогенные и вулканогенно-осадочные коллекторы нефти и газа отличаются характером пустотного пространства, большой ролью трещиноватости, резкой изменчивостью свойств в пределах месторождения. Особенность коллекторов заключается в несоответствии между сравнительно низкими величинами ёмкости, проницаемости и высокими дебитами скважин, вскрывающих залежи в этих породах. Наиболее часто встречаются трещинный и порово-трещинный типы коллекторов.

Глинисто-кремнисто-битуминозные породы отличаются значительной изменчивостью состава, неодинаковой обогащённостью органическим веществом; микрослоистость, развитие субкапиллярных пор и микротрещиноватость обусловливают относительно низкие фильтрационно-ёмкостные свойства. В некоторых разностях пористость достигает 15% при проницаемости в доли миллидарси. Преобладают трещинные и порово-трещинные коллекторы нефти и газа. Промышленная нефтеносность глинисто-кремнисто-битуминозных пород установлена в баженовской (Западная Сибирь) и пиленгской (Сахалин) свитах.

Наиболее значительные запасы углеводородов приурочены к песчаным и карбонатным рифогенным образованиям. Выявление коллекторов нефти и газа проводится комплексом геофизических исследований скважин и анализом лабораторных данных с учётом всей геологической информации по месторождению. При изучении карбонатных коллекторов нефти и газа, кроме традиционных литологических и промыслово-геофизических методов, используют фотокаротаж, ультразвуковой метод, капиллярного насыщения пород люминофорами и другие методы.

Новое на сайте

>

Самое популярное