Домой Кредиты онлайн Технологии мониторинга зданий и сооружений. Общий мониторинг технического состояния зданий и сооружений

Технологии мониторинга зданий и сооружений. Общий мониторинг технического состояния зданий и сооружений

Объект капитального

Капитальный ремонт здания

Реконструкция здания



Модернизация здания

Моральный износ здания

Физический износ здания

Усиление -

Причины, вызывающие необходимость проведения технического обследования

Необходимость проведения обследования - его состав, объем и характер -продиктовано ГОСТ 31937-2011 «Здания и сооружения. Правила обследования и мониторинга технического состояния».

Обследование и мониторинг технического состояния зданий и сооружений проводят в соответствии с предварительно разработанными программами.

Первое обследование технического состояния зданий и сооружений проводится не позднее чем через два года после их ввода в эксплуатацию. В дальнейшем обследование технического состояния зданий и сооружений проводится не реже одного раза в 10 лет и не реже одного раза в пять лет для зданий и сооружений или их отдельных элементов, работающих в неблагоприятных условиях (агрессивные среды, вибрации, повышенная влажность, сейсмичность района 7 баллов и более и др.). Для ункальных зданий и сооружений устанавливается постоянный режим мониторинга.

Техническое обследование также необходимо проводить:

По истечении сроков эксплуатации здания;

При обнаружении значительных и опасных дефе-

ктов и повреждений в процессе эксплуатации зда-

По результатам последствий пожаров, стихийных бедствий, аварий, связанных с разрушением здания (сооружения);

По инициативе собственника объекта;

При изменении технологического назначения здания (со - оружения);

По предписанию органов, уполномоченных на ведение го сударственного строительного надзора

Обнаруженные повреждения и дефекты конструкций вследствие температурных, коррозионных, силовых воздействий, нарушение геометрии строительных конструкций и всего здания;

Просадки и неравномерные осадки и деформации фундаментов;

Планируемые увеличения эксплутационных нагрузок в связи с изменением функционального назначения здания;

Реконструкция зданий во всем многообразии сопровождающих ее целей;

Возобновление остановленного строительства при отсутствии своевременной консервации, а при выполнении консервации – по истечении более 3 лет;

Необходимость контроля технического состояния вследствие произошедших стихийных бедствий (пожар, землетрясение, техногенные аварии);

Отсутствие проектной и исполнительной документации объекта;

Необходимость оценки состояния конструкций здания, находящегося вблизи строящихся объектов.

Состав программы обследования

Программой обследования устанавливают:

Перечень подлежащих обследованию строительных конструкций;

Перечень подлежащих обследованию инженерного оборудования и инженерных сетей;

Места и методы инструментальных измерений и испытаний конструкций не разрушающими методами;

Места вскрытия и отбора проб материалов, в том числе грунтов и для их испытания в лабораториях;

Необходимость проведения дополнительных инженерно-геологических изысканий;

Перечень необходимых поверочных расчетов;

Методы и способы исследований;

Перечень приборной базы исследований;

График выездов (посещений) на объект;

Состав экспертов и других специалистов

Детальное (инструментальное) обследование

Измеритель прочности бетона ОНИКС-2.3

Прибор действует по принципу склерометра и предназначен для оперативного определения прочности и однородности бетона ударно-импульсным методом. Прибор также применяется для оценки прочности, твердости, пластичности других материалов – полнотелого кирпича, растворов и т.д. Диапазон измерений от 2 до 100 мПа.

Погрешность 5 %.

Память 1000 серий или 200 серий по 15 ударов.

Прибор оснащен интерфейсом и программой обработки результатов.

Прибор универсальный ультразвуковой ПУЛЬСАР-1.0

Прибор предназначен для измерения времени и скорости распространения ультразвуковых волн в твердых материалах при поверхностном и сквозном прозвучивании. Прибор позволяет определять прочность, плотность и модуль упругости по установленным корреляционным зависимостям.

Основные виды контролируемых материалов: бетон (тяжелый, легкий), кирпич (керамический и силикатный).

Фиксированная база измерений 100 мм

Рабочая частота колебаний 60 кГц

Память результатов 200 серий

Питание от аккумуляторов (АА) 3,6 В

Регистратор РТВ

Серия регистраторов РТВ, выполненных на базе изделий DS1921-23, предназначена для регистрации тепловых процессов во времени и мониторинга температуры во времени с последующей обработкой информации на персональном компьютере. За счет малых габаритов (Ø17х6 мм) и полной автономности (регистраторы имеют встроенную литиевую батарею), герметичности, виброустойчивости регистраторы могут быть установлены в труднодоступных местах, там, где применение других средств контроля невозможно. Регистраторы РТВ являются эффективной заменой применяемых в настоящее время громоздких и неудобных в эксплуатации самопишущих приборов.

Большой набор функций и режимов работы делает РТВ чрезвычайно эффективным для регистрации и контроля температуры и влажности в следующих случаях:

Строительство и производство стройматериалов (в т.ч. дорожное строительство);

Транспортирование и хранение (склады, хранилища);

Контроль температуры изделий и техники при работе оборудования («Термошпион»);

Варианты исполнения прибора:

РТВ-2.0…РТВ-2.1 – регистраторы температуры;

РТВ-3.0 – регистраторы влажности.

Диапазон измеряемых температур

РТВ-2.0 от 0 до +85ºС

РТВ-2.1 от -40 до + 85ºС.

Основная абсолютная погрешность измерения температуры ±1ºС в диапазоне от -40 до +70ºС; ±2ºС в диапазоне от +70 до +125ºС.

Диапазон измеряемой влажности (для РТВ-3.0) от 0 до 100%.

Встроенные часы/календарь, отсчитывающие время от секунды до годов (с учетом високосных лет) с точностью хода не ниже ±2 мин/месяц при температуре от 0 до +45ºС.

Период отсчетов регистрируемых температуры и влажности от 1 до 273 часов.

Количество сохраняемых отсчетов температуры – до 2048, при этом длительность регистрируемого процесса – от 1,5 суток до 362 суток.

Все зафиксированные отсчеты температуры и влажности сохраняются с привязкой к реальному времени с точностью до минуты.

Обмерные работы

Цель обмерных работ – определение или уточнение геометрических размеров зданий, конструкций и их элементов, установление их соответствия проекту.

Объем и состав обмерных работ устанавливают во время предварительного обследования.

Обмерные работы производятся с помощью измерительных инструментов: рулетки, складных реек, наборов металлических линеек и угольников. Используются уровни, отвесы, штангенциркули, шаблоны и др. Положения основных базовых линий, углов и отметок должны определяться с помощью геодезических приборов – теодолита и нивелира. Погрешность измерений при этом должна быть не более 0,2 допускаемых величин отклонений .

Результаты обмеров наносятся на копии рабочих чертежей здания или на эскизы для последующего изготовления (восстановления) чертежей.

Состав обмерных работ включает:

Уточнение разбивочных осей здания;

Проверку пролетов и шагов конструкций;

Замер основных параметров несущих конструкций;

Определение фактических размеров сечений;

Проверку вертикальности и соосности конструкций, параметров площадок опирания в узлах;

Измерение прогибов, наклонов, перекосов, выпучивания, смещений;

В железобетонных и каменных конструкциях определение наличия трещин и величины их раскрытия;

В металлических конструкциях определяют сечения элементов, длину, катеты сварных швов, наличие деформаций элементов, а также наличие специальной обработки;

В деревянных конструкциях измеряют длины элементов, их искривление и коробление, наличие и размеры трещин, размеры участков биологического поражения.

Измерение температур

При теплотехнических исследованиях ограждающих конструкций производятся измерения температур твердых, газовых, жидкостных и сыпучих тел в диапазоне от минус 70 до плюс 1600 °С.

Измерения могут проводиться контактным и бесконтактным методом.

К контактным приборам относятся термометры: биметаллические, жидкостные, полупроводниковые и электрические, а также на основе термопар.

К бесконтактным приборам относятся: тепловизоры, инфракрасные термометры и пиранометры.

Для проведения термомониторинга используют автоматические самописцы или съемные электронные кассеты с цифровой памятью. При выявлении влияния на участки измерения источников излучения участки необходимо экранировать, сохраняя вокруг них свободное движение воздуха. Термопары применяют, в основном, для измерения температурных газовых и жидких сред, сыпучих материалов. При этом используются преимущественно хромель-копелевые (ХК), хромель-алюмелевые (ХА) и медь-константоновые термопары (ТМК).

Вторичными (считывающими) приборами для термопар являются высокоточные потенциометры КП-59, самопишущие ЭПП-09, ПОР.

Тарировочные графики для термопар обычно строятся из сопоставительных испытаний термопары во время таяния льда в термосе, где температура определяется с помощью ртутного термометра.

Бесконтактные методы измерения температур реализуются с помощью оптических пиранометров ОПИР-017 (в диапазоне -18…+400×°С), а также бесконтактных термометров типа «Thermoparu ±750».

Для получения температурного поля в ограждающих конструкциях используют тепловизоры АТП-44-М (ГОСТ 22629-85), AGA «Thermovizion-750», «Thermovizion-470».

Измерение кренов здания

Почти все старые здания, подлежащие реконструкции, приобретают крен – отклонение конструкций и вертикальных обрезов здания от нормального положения к горизонтальной плоскости в уровне планировки.

Крен зданийизмеряют следующими способами:

Вертикального проецирования с помощью отвеса;

Вертикального проецирования теодолитом или прибора оптического вертикального визирования;

Горизонтальных углов и угловых засечек.

Способ вертикального проецирования с помощью отвеса – самый простой и доступный, но применим для относительно невысоких зданий (h ≤ 15 м), что связано с трудностями закрепления верхних точек и влиянием ветра на отклонение нити отвеса. При этом способе отвес закрепляют наверху здания в крайней точке В , а отклонения нити отвеса от нижней точки А измеряют миллиметровой линейкой в двух взаимно перпендикулярных плоскостях здания (см. рис. 4.13, а), затем вычисляют общую линейную величину крена (l ) по формуле

Рис. 4.13. Схема измерения крена здания:

а – отвесом; б – с помощью теодолита

Относительную величину крена i вычисляют по формуле

, (4.27)

где h высота здания, м.

Угловую величину крена α, определяющую его направление, вычисляют следующим образом:

. (4.28)

Вертикальное проецирование с помощью теодолита выполняют так:

Теодолит устанавливают над постоянным знаком, находящимся в створе с одной из вертикальных плоскостей здания на расстоянии (1,5-2)·h ;

Наводят вертикальную ось трубы теодолита на хорошо обозначенную и видимую точку В ;

Трубу опускают до точки В" и берут отсчет по миллиметровой линейке внизу, в точке В" , которая приставлена к нижнему участку стены. Таким образом, измеряют горизонтальное отклонение от исходной точки В до В" , что обозначают ∆х ;

Измерение повторяют относительно другой плоскости этого же угла здания (см. рис. 4.13, б).

Вопросы для самопроверки

1. Поясните, чем отличается реконструкция зданий от ремонтов: капитального, текущего.

2. Какие причины вызывают постановку технического обследования?

3. Какова последовательность работ при проведении предварительного обследования?

3.1. В каких случаях начинается детальное техническое обследование?

4. В чем преимущество неразрушающих методов исследования конструкций перед лабораторными с отбором проб?

7. Как определяется моральный износ здания?

8. По каким критериям определяются условия теплозащиты здания?

9. Какие геодезические работы проводятся при реконструкции?

10. Для чего выполняются наблюдения за осадками фундаментов?

11. Как измеряется крен здания?

Общий мониторинг технического состояния зданий-

Система наблюдения и контроля, проводимая по определенной программе, утверждаемой заказчиком, для выявления объектов, на которых произошли значительные изменения напряженно-

деформированного состояния несущих конструкций или крена и для которых необходимо обследование их технического состояния.

Динамические параметры зданий (сооружений)- Параметры зданий и сооружений, характеризующие их динамические свойства, проявляющиеся при динамических нагрузках, и включающие в себя периоды и декременты собственных колебаний основного тона и обертонов, передаточные функции объектов, их частей и элементов.

Уникальное здание (сооружение)- Объект капитального

строительства, в проектной документации которого предусмотрена хотя бы одна из следующих характеристик: высота более 100 м, пролеты более 100 м, наличие консоли более 20 м, заглубление подземной части (полностью или частично) ниже планировочной отметки более чем на 15 м, с пролетом более 50 м или со строительным объемом более 100 тыс. м3 и с одновременнымпребыванием более 500 человек

Капитальный ремонт здания - комплекс строительных и организационно-технических мероприятий по устранению физического и морального износа, не предусматривающих изменение основных технико-экономических показателей здания или сооружения (площади,объема), включающих замену отдельных несущих конструктивных элементов и систем инженерного оборудования в случае необходимости.

Реконструкция здания - комплекс строительных работ и организационно-технических мероприятий, связанных с изменением основных технико-экономических показателей (нагрузок, планировки помещений, строительного объема и общей площади здания, инженерной оснащенности) с целью изменения условий.

Модернизация здания - частный случай реконструкции, предусматривающий изменение и обновление объемно-планировочного и архитектурного решений существующего здания старой постройки и его морально устаревшего инженерного оборудования в соответствии с требованиями, предъявляемыми действующими нормами к эстетике условий проживания и эксплуатационным параметрам жилых домов и производственных зданий.

Моральный износ здания - постепенное (во времени) снижение основных эксплуатационных показателей по уровню комфорта проживания или работы людей по отношению к современному, технических и санитарных требований эксплуатации зданий.

Физический износ здания - ухудшение технических и связанных с ними эксплуатационных показателей здания, вызванное причинами эксплуатации.

Усиление - комплекс мероприятий, обеспечивающих повышение несущей способности и эксплуатационных свойств строительной конструкции или здания и сооружения в целом по сравнению с фактическим состоянием или проектными показателями.

Ирования.

Применяют для уникальных, высотных и технически сложных зданий.

Мониторинг, осуществленный на стадии изысканий, должен дополняться мониторингом на стадии с роительства. Посл дний, обеспечивает получение данных о ходе выпол нения проекта и изменениях в окружающей среде, а для ответственных сооружений является источником инфо рмации для принятия решений в ходе научного сопровождения строительства.


Цель. При выборе системы наблюдений необходимо учитывать цель проведения мониторинга, а так- же скорости протекания процессов и их изменение во времени, продолжительность измерений, ошибки измерений, в том числе за счет изменения состояния окружающей среды, а также влияния помех и аномалий природно-техногенного характера. Программу проведения мониторинга согласовывают с заказчиком. В ней, наряду с перечислением видов работ, устанавливают периодичность наблюдений с учетом технического состояния объекта и общую продолжительность мониторинга. (Основной целью мониторинга является формирование плана капитального ремонта по стратегии "ремонт по отказу".

Цель мониторинга - проведение наблюдений и своевременное выявление недопустимых отклонений в поведении вновь существующих объектов, находящихся в зоне влияния нового строительства, а также сохранение окружающей природной среды.

Мониторинг технического состояния включает в себя сплошное обследование жилищного фонда один раз в пять лет для планирования капитального ремонта.

Рассмотрим принципиальную схему мониторинга здания

Рис. 2. Блок схема инструментального мониторинга высотного комплекса «Континенталь» в Москве.

На рис. 3 показаны примеры инструментального оснащения схем мониторинга для плитного фундамента (Москва), а также и для плитно-свайного (Казань). Инструментальное оснащение мониторинга может варьироваться, но основными элементами являются:

Скважинные измерения осадок в грунтах, при малом числе скважин - дополняются измерениями наклонов,

Измерения порового давления и вариации уровня грунтовых вод,

Определения нагрузок на грунт и напряжений в фундаментной плите и сваях,

Измерение напряжений в конструкциях: стенах, пилонах и колонах,

Наблюдение колебаний здания.

Рис.3. Примеры инструментального оснащения схем мониторинга для плитного фундамента А(Москва), а также и для плитно-свайного В(Казань).

Задачи. Обеспечение безопасной эксплуатации зданий и сооружений промышленных предприятий является актуальной задачей, которая решается комплексом мер на стадиях от проектирования до ликвидации объекта. Обеспечение промышленной безопасности зданий и сооружений осуществляется на основе действующих нормативно-правовых документов, которые устанавливают требования непосредственно к конструкциям зданий и сооружений, по надзору за их техническим состоянием, к технологическим процессам, размещаемым в зданиях и сооружениях, к работающему и обслуживающему персоналу предприятий.

В зависимости от поставленныз задач натурные обследования зданий и сооружений охватывают следующие этапы:

Предварительное обследование,

Детальное инструментальное обследование,

Определение физико-технических характеристик материалов обследуемых конструкций в лабораторных условиях,

Обобщение результатов обследований.

Предварительное обследование зданий и сооружений: определение общего состояния строительных конструкций, определение состава исследований, сбор первичной информации по объекту.

Детальное инструментальное обследование направлено на выявление: факторов, формирующих производственную среду и сравнение с нормативными требованиями; технического состояния несущих и ограждающих конструкций.

На практике постоянный мониторинг по экономическим со­ображениям предпринимается достаточно редко и только по от­ношению к отдельным сооружениям, причем по большей части с конкретными задачами. С общеметодической точки зрения такой мониторинг правильнее было бы назвать «длительным специаль­ным обследованием» или «подконтрольной эксплуатацией» инже­нерного сооружения.

Для подобной практики имеются, как минимум, три основания:

Дороговизна оборудования;

Сложность обработки больших массивов постоянно поступа­ющей информации и неотработанность механизмов оперативного принятия решения на ее основе;

Ограниченность номенклатуры доступных к универсальному использованию приборных систем, предназначенных для этой цели.

Управление риском в настоящее время является наиболее перспективным направлением, которое может включать в себя компоненты ранее разработанных методов оценки безопасности объектов. При этом, реализация методов управления рисками необходимо осуществлять с внедрением систем мониторинга объекта. На рис. 4 представлен подход по реализации методов оценки и управления рисками, контроля и мониторинга объектов с применением существующей системы по проведению экспертизы зданий и сооружений.

Рис.4. Повышение безопасности зданий и сооружений с применением методов управления рисками и мониторинга.

Повторное обследование зданий и их элементов, находящихся в аварийном состоянии, – раз в шесть месяцев, находящихся в ветхом состоянии – раз в год, в неудовлетворительном состоянии – раз в два года, а также выборочное обследование отдельных конструкций и систем по запросам владельцев при выходе их из строя, повреждениях, нарушениях режимов с ежегодным анализом всех заявок, поступивших в объединенные диспетчерские системы (ОДС), для планирования текущего ремонта и технического обслуживания (ТО).

До начала обследования собираются и анализируются архивный материал, содержащий информацию о техническом состоянии зданий района, выполненных ремонтных работах, акты и предписания специализированных эксплуатационных организаций о состоянии инженерного оборудования (лифты, противопожарная автоматика и дымоудаление, электроснабжение, вентиляция). Анализируются заявки, полученные на ОДС. [ 4,256]

На основании этих данных выдается задание на обследование каждого дома с учетом особенностей зданий и наиболее слабых элементов.

Осматривают все подвалы, чердаки, лестничные клетки, общие холлы и т. д. Выборочно проверяют квартиры, обязательно на первых и последних этажах, в торцовых секциях. Минимальный осмотр составляет 25% от общего количества квартир в доме. В каждом помещении обследуются все конструкции и инженерное оборудование. Описание дефектов заносится в рабочий журнал. При невозможности определить причины деформаций и повреждений визуальным способом проводится дополнительное инструментальное обследование.

Особо выделяются аварийные участки и узлы; их подробно описывают.

Полностью осматривают кровли и фасады. Для различных типов зданий установлен объем репрезентативной выборки количества обследования квартир. При обследовании инженерных систем выделяются их части в подвалах, квартирах, на чердаках. Непосредственно в ходе обследования выдаются рекомендации и предписания на необходимые срочные ремонтно-восстановительные или охранные работы.

После проверки всех помещений полученная информация с учетом данных архива и ОДС классифицируется по видам конструкций И систем. В бланк, заполняемый на каждое строение, заносят паспортные данные и сведения о капитальных ремонтах, приведенных в здании.

В разделе «Результаты обследования» отмечается техническое состояние 23 элементов здания (по схеме: конструкция; перечень дефектов и повреждений; объем повреждений в процентах от общего объема элемента; общая характеристика технического состояния элемента.

Описание дефектов и повреждений дастся по методике определения физического износа жилых зданий (ВСН-53-86 (р)), которая разработана в помощь специалистам, выполняющим обследование; в ней дано подробное описание возможных дефектов н повреждений конструкций и систем различной модификации элементов с указанием минимального объема контроля.

Техническое состояние каждого элемента оценивается как аварийное, когда требуется срочный ремонт или замена (А), неудовлетворительное (Н) или удовлетворительное (У).

По совокупности состояния элементов техническое состояние здания оценивается как аварийное, когда конструкции грозят обрушением; неудовлетворительное, если эти характеристики преобладают в большинстве элементов; частично неудовлетворительное, если в неудовлетворительном состоянии находятся только несколько элементов, и удовлетворительное.

Обследование выполняется высококвалифицированными специалистами, прошедшими специальный курс обучения. Достоверность данных обследования выборочно проверяет руководитель бригады в каждом административном округе города, техническое состояние оценивается в присутствии представителей владельца здания и подрядной организации, отвечающей за его эксплуатацию.

В выходном документе (заключении о техническом состоянии жилого строения) отражаются: паспортные данные, включая серию здания, гол постройки, физический износ по данным БТИ, а также информация о наличии технической документации на здание (технические заключения, проекты ремонта и т. п.) и результаты предыдущего обследования технического состояния.

Приводится информация о выполнении рекомендаций предыдущего обследования по капитальному ремонту элементов здания (включая объем ремонта); затем результаты обследования технического состояния конструкции и систем здания с указанием объема повреждений по состоянию на день обследования; далее данные специализированных эксплуатационных организаций о техническом состоянии систем вентиляции, газоходов, лифтов, электроснабжения, газоснабжения, противопожарной автоматики и дымоудаления и дополнительные данные, освещающие индивидуальные особенности зданий и состояние их конструкций. В итоге делаются выводы по результатам обследования по зданию в целом и рекомендации по ремонтно-восстановительным работам на ближайшие пять лет.

Результаты обследований используются при выявлении приоритетов в обеспечении безаварийного содержания жилых домов, предупреждении появлений аварий и отказов основных строительных конструкций, формировании титульных списков на капитальный ремонт зданий и отдельных конструкций и их систем, контроле над эффективным использованием бюджетных и привлеченных средств, выделяемых на содержание жилищного фонда.

Накопленная и формализованная информация ласт возможность решать оперативные и стратегические задачи по организации технического обслуживания и ремонта жилищного фонда.

Компьютерные программы, существующие в настоящее время, позволяют представлять и анализировать возможные варианты планов технического обслуживания и ремонта (ТОиР), выбирать из них экономически выверенные и рациональные.


Актуальной проблемой на сегодняшний день является разработка разнообразных систем мониторинга конструкций зданий и сооружений, и внедрение их в практику строительства.

Одно из них это - волоконно-оптические измерительные системы: свойства, принципы, применение.

Современное состояние строительной науки и практики в области градостроительства, инфраструктуры наземных транспортных коммуникаций, возведения сооружений в сейсмоопасных регионах, сооружения атомных станций и других актуальных приложений настоятельно требует разработки эффективных методик непрерывного исследования состояния материала строительных конструкций и воздействующих нагрузок. Развитие цивилизации в целом приводит, с одной стороны, к созданию новых методов для достижения большей надежности и безопасности, а, с другой стороны – к формированию условий повышенного потенциального риска техногенных катастроф. В этой связи усилия разработчиков систем мониторинга надежности направлены на создание смарт-технологий, способных организовать непрерывную автономную диагностику каких-либо конструкций, в режиме реального времени.

Современные волоконно-оптические датчики позволяют измерять многие физические параметры: деформацию, давление, температуру, расстояние, положение в пространстве, скорость вращения, скорость линейного перемещения, ускорение, колебания, массу, звуковые волны, уровень жидкости, концентрацию газа, и т.д..

Волоконно-оптические измерительные системы представляют собой набор волоконно-оптических датчиков (ВОД), объединенных в единую сеть той или иной топологической конфигурации с заданным алгоритмом опроса, которые целесообразно разделить на два широких класса в зависимости от роли волоконного световода (ВС), которую он играет в ВОД:

1. ВС выполняет только транзитную функцию среды-носителя для передачи оптического излучения к чувствительному элементу (ЧЭ), расположенному в зоне измерений;

2. ВС является средой-носителем для передачи сигналов и одновременно является чувствительным элементом ВОД.

В первом случае чувствительный элемент ВОД представляет собой объект, инородный по отношению к ВС, обладающий свойством изменять характеристики световой волны (амплитуда, фаза, поляризация, длина волны и т.д.) вследствие изменения измеряемого физического параметра. При этом чувствительный элемент находится в контакте с точкой среды, параметры которой (или параметры некоторой окрестности которой) контролируются ВОД. Поэтому для организации мониторинга, распределенного в некоторой трехмерной области сплошной среды, требуется наличие нескольких ВОД. Количество точек измерения можно определить как произведение количества ВОД на число измерительных каналов одного ВОД. Схема измерительных систем такого типа представлена на рис. 4.1.

Во втором случае волоконный световод в определенном смысле суть объект и субъект измерений одновременно. При этом предполагается, что имеется взаимнооднозначное соответствие между состоянием участка световода и параметрами окружающей его среды. Измерительные системы этого типа используют свойства световода преобразовывать измеряемые воздействия в соответствующие изменения характеристик световой волны, распространяющейся по световоду. В этом случае значительно упрощается оптическая схема измерительной системы и появляется возможность осуществлять распределенный контроль состояния объекта вдоль трассы прокладки волоконного световода. Соответствующая упрощенная схема измерительных систем представлена на рис.4.2.

Целенаправленное изучение вопросов мониторинга с помощью волоконно-оптических измерительных систем, активно происходящее за рубежом, определяют необходимость анализа европейских и американских исследований в этом направлении. (Приложение 2)

Для осуществления такого мониторинга необходимо уже при разработке проектно-сметной документации предусматривать наличие в возводимом объекте устройств, контролирующих состояние его конструкций и элементов, сбор и отображение информации о напряжениях, деформациях, температуре, влажности и т.д. в контролируемых точках объекта. Мониторинг технического состояния элементов и конструкций уникальных объектов может проводиться и с использованием переносного комплекта приборов и устройств с определенной периодичностью в ходе эксплуатации объектов.

Такой подход позволит избежать внезапного возникновения аварийных ситуаций и обеспечит успешную и экономичную эксплуатацию сложных зданий и сооружений. Вместе с тем, для реализации такого подхода необходима соответствующая доработка нормативно-технической документации в области обследования технического состояния зданий и сооружений, учитывающая технико-экономическую эффективность этого мероприятия.

Заключение

Мониторинг технического состояния зданий и сооружений является самостоятельным направлением строительной деятельности, охватывающим комплекс вопросов, связанных с обеспечением эксплуатационной надежности зданий, с проведением ремонтно-восстановительных работ, а также с разработкой проектной документации по реконструкции зданий и сооружений.

Объем мониторинга зданий и сооружений увеличивается с каждым годом, что является следствием ряда факторов: физического и морального их износа, перевооружения и реконструкции производственных зданий промышленных предприятий, реконструкции малоэтажной старой застройки, изменения форм собственности и резкого повышения цен на недвижимость, земельные участки и др. Особенно важно проведение мониторинга зданий и сооружений, что часто связано с изменением действующих нагрузок, изменением конструктивных схем и необходимостью учета современных норм проектирований зданий. В процессе эксплуатации зданий вследствие различных причин происходят физический износ строительных конструкций, снижение и потери их несущей способности, деформации как отдельных элементов, так и здания в целом. Для разработки мероприятий по восстановлению эксплуатационных качеств конструкций, необходим мониторинг с целью выявления причин преждевременного износа понижения их несущей способности.

При мониторинге зданий и сооружений применяется лучшее оборудование и приборы, внесенные в Госреестр средств измерения РФ.

Большое значение для реального контроля технического состояния зданий и сооружений города с большепролетными конструкциями имеет аппаратурное обеспечение этого процесса. В этом направлении необходимо на основе исследований предлагаемых рынком систем, приборов и устройств создать каталог оборудования, рекомендуемого для мониторинга текущего технического состояния зданий и сооружений с большепролетными конструкциями. Кроме того, для мониторинга особо сложных и больших уникальных объектов с большепролетными конструкциями необходимо совершенствование оборудования и разработка комплексной автоматизированной станции, в том числе на беспроводной основе..

Список использованной литературы

1. Национальный стандарт РФ ГОСТ Р 53778-2010 "Здания и сооружения. Правила обследования и мониторинга технического состояния" (утв. приказом Федерального агентства по техническому регулированию и метрологии от 25 марта 2010 г. N 37-ст). Москва, Стандартинформ,2010

2. Бойко М.Д. Техническое обслуживание и ремонт зданий и сооружений. Л., Строй¬издат, 1986г.

3. Касьянов В.Ф., Калинин В.М., Авдеева Т.А., Сокова С.Д. Оценка технического состояния эксплуатируемых зданий и инженерных систем. М., МИСИ им. В.В. Куйбышева 1993г.

4. Козачек В.Г., Нечаев Н.В., и др. Обследование и испытание зданий и сооружений. ФГУТТ «Издательство «Высшая школа», М., 2004г., 446с.

5. Порывай Г.А., Датюк О.В. Техническая эксплуатация зданий. М., МИСИ им. В.В. Куйбышева, 1983г.

6. Стражников А.М., Ройтман А.Г., Мониторинг технического состояния жилых зданий. Опыт городов и регионов. Москва. 2000г.,9с.

7. Шубин Л.Ф., Датюк О.В., Кононович Ю.В. и др. Примеры расчетов по организации и управлению эксплуатацией зданий. М., Стройиздат, 1991г.

8. http://fire01.ucoz.ru/publ В.В. Гурьев. Опыт Российской инженерной академии и ГУП МНИИТЭП в области мониторинга безопасности строительных конструкций.

9. http://www.zetms.ru/support/articles/seismo/building_monitor.php?print=Y Капустян Н. К, Вознюк А. Б.Опыт проектирования и эксплуатации схем мониторинга конструкций и оснований высотных зданий/

10. Свод правил по проектированию и строительству Проектирование и устройство оснований и фундаментов зданий и сооружений и N 28 от 9 марта 2004 г


Байбурин, Р.А. Концепция системы мониторинга и управления рисками на резервуарных парках [Текст]/Р.А. Байбурин, Н.Х. Абдрахманов//Промышленная безопасность на взрывопожарных и химически опасных производственных объектах. Технический надзор, диагностика и экспертиза, 2007

Варфоломеев, А.Ю. Автоматизированная система диагностики промышленного оборудования [Текст]/А.Ю. Варфоломеев, А.В. Микулович, В.И. Микулович, В.Т. Шнитко//Техническая диагностика и неразрушающий контроль, 2006, №4

Введенский, П.В. Современные приборы мониторинга и диагностики промышленных сооружений [Текст]/П.В. Введенский //Промышленная безопасность на взрывопо-жарных и химически опасных производственных объектах. Технический надзор, диагностика и экспертиза, 2007

Харебов, В.Г. Система комплексного диагностического мониторинга опасных производственных объектов [Текст]/В.Г. Харебов, Ю.П. Бородин, В.А. Шапорев//В мире неразрушающего контроля, 2006, №4 (34)

Потапкин, Е.В. Мониторинг существующих зданий и возводимых объектов – единый механизм строительства [Текст]/ Е.В. Потапкин//Промышленное и гражданское строительство, 2006, №12

Проблемы, связанные с обеспечением безопасности строительных конструкций зданий и сооружений опасных производственных объектов (ОПО), всегда существовали, и решение их в настоящее время может быть осуществлено за счет значительного прогресса в инновационных технологиях, программном обеспечении и аппаратных средствах, в разработке эффективных алгоритмов сбора и обработки информации. Одна из таких проблем - мониторинг технического состояния ОПО в режиме реального времени.

Большая часть основных фондов ОПО выработали свой ресурс, но продолжают эксплуатироваться. В современных условиях модернизации экономики и производственных процессов, обеспечение безопасности эксплуатации стареющих объектов приобретает все большую актуальность. Возрастание роли обеспечения промышленной безопасности при эксплуатации ОПО связано, в первую очередь, с ростом числа аварий на промышленных предприятиях, которые влекут за собой не только производственные издержки, но представляют опасность для человека и окружающей среды.

Рассматривая основные причины аварий промышленных зданий и сооружений следует отметить, что в зону наибольшего риска входят объекты, не подвергавшиеся обследованию и экспертизе технического состояния. Как правило, нарушение принципов промышленной безопасности связано с рядом причин: нерегулярность проведение экспертизы ОПО; отсутствие постоянного мониторинга технического состояния несущих конструкций зданий и сооружений; нарушение норм эксплуатации объектов, в связи с чем возможны аварии в период между обследованиями технического состояния и экспертизами промышленной безопасности.

Все вышесказанное усугубляется общими сложностями и недостатками сложившейся практики обеспечения промышленной безопасности зданий и сооружений. Типичной ошибкой в обеспечении промышленной безопасности строительных объектов и промышленных предприятий является отсутствие системного подхода в оценке сооружений ОПО, что приводит к частому возникновению аварийных ситуаций в отдельных конструкциях объекта. Дополнительные сложности создает отсутствие эффективной методологической базы определения технического состояния объектов в различные периоды эксплуатации, а также проблемы внедрения инновационных методов технического мониторинга зданий и сооружений.

Поэтому в настоящее время чрезвычайную актуальность приобретает возможность следить за техническим состоянием зданий и сооружений в режиме реального времени.

Ключевую роль в обеспечении промышленной безопасности зданий и сооружений на ОПО играют нормативно-техническое обеспечение безопасной эксплуатации зданий и сооружений, организационные мероприятия Ростехнадзора, а также организационно-технические вопросы мониторинга технического состояния зданий и сооружений.

Мировая практика показывает, что приживаются и завоевывают прочный статус документов обязательных к применению, только те документы, работа над которыми не прекращается с их изданием и которые модернизируются и переиздаются в течение последующих лет единой группой разработчиков (организаций и специалистов). Таким же образом разрабатывались и переиздавались ГОСТы и СНИП в советское время (раз в 3–5 лет). Актуализация принципов регулярного совершенствования нормативно-правой базы позволит не только модернизировать систему обеспечения промышленной безопасности, но и будет способствовать внедрению инновационных методов мониторинга технического состоянию зданий, сооружений и отдельных строительных конструкций. Однако, данный процесс должен сопровождаться модернизацией самих промышленных объектов.

Действующая в настоящее время в России нормативно-правовая база по промышленной безопасности зданий и сооружений затрагивает проблемы и задачи экспертизы их технического состояния и имеет привязку либо к зданиям отраслевого назначения, либо к конструктивным элементам строительных объектов. Данная особенность ограничивает возможности ее применения, так как обследование технического состояния промышленных зданий и сооружений – это лишь часть полноценной экспертизы промышленной безопасности ОПО.

К основным целям выхода таких нормативных правовых документов можно отнести следующие: повышение уровня промышленной, экологической, энергетической безопасности производственных зданий и сооружений, ограничение административного давления на малый и средний бизнес; совершенствование кадровой политики государственных органов оценки соответствия состояния зданий и сооружений требованиям безопасности; актуализация методической документации, применяемой при оценке соответствия на объектах, подконтрольных Ростехнадзору; повышение ответственности владельцев зданий и сооружений ОПО за обеспечение безопасности.

Одной из главных проблем проведения экспертизы промышленной безопасности строительных конструкций зданий и сооружений ОПО является ее качество. При этом в ряде случаев низкое качество проведения экспертизы промышленной безопасности обусловлено следующими причинами:

некомплектность или отсутствие на промышленных предприятиях проектной, исполнительской и эксплуатационно-технической документации;

крайняя изношенность зданий и сооружений, которым на ОПО было уделено внимание меньшее, чем техническим устройствам (технологическому оборудованию, от технического состояния которого зависит экономическое положение предприятия). Сроки ремонтов затягиваются, проводятся не в полной мере, на ремонтах зданий и сооружений, к величайшему сожалению, экономят и т.п.;

привлечение неквалифицированных организаций, предлагающих свои услуги по демпинговым ценам, поскольку при выборе подрядчика для проведения экспертизы промышленной безопасности зданий и сооружений определяющим для заказчика является стоимость работ, а не качество экспертизы.

Чтобы повысить качество экспертизы промышленной безопасности следует избавиться от многочисленных недобросовестных, непрофессиональных фирм, которые за счет демпинговой цены оказываемых услуг, обусловленной неполным объемом и низким качеством работ, вытесняют с рынка экспертных услуг компании, обладающие высокопрофессиональными экспертами и специалистами и современным диагностическим оборудованием.

Все это стоит немалых затрат. Системы лицензирования и аккредитации, существующие в настоящее время, пока в недостаточной мере стали барьером на пути этого множества компаний.

Развитие системы независимого строительного контроля (включая авторский и технический надзор) является одним из главных направлений в строительстве, реконструкции и капитальном ремонте объектов, которое успешно реализуется в странах с развитой экономикой, на основе следующих основных принципов:

Независимый строительный контроль должен осуществляться организациями, имеющими все необходимые лицензионно-разрешительные документы, профессиональный штат инженерно-технических работников, проектировщиков, строителей, лабораторное оборудование и прочую материально-техническую базу, достаточную для проведения всего комплекса контрольных мероприятий при строительстве, реконструкции и капитальном ремонте;

Между лицами, непосредственно осуществляющими строительство и независимый строительный контроль, не должно заключаться возмездных договоров либо в заключенных возмездных договорах не должны содержаться условия, позволяющие оказывать финансовое давление на организации, которые проводят независимый строительный контроль;

сотрудники организаций, осуществляющих независимый строительный контроль, должны быть обучены и аттестованы в рамках Единой системы оценки соответствия на объектах, подконтрольных Ростехнадзору (ЕС ОС Ростехнадзора);

Организации, осуществляющие независимый строительный контроль, должны определяться на конкурсной основе;

Страхование деятельности компаний, реализующих независимый строительный контроль с применением процедур предстраховой экспертизы и вовлечением независимых страховых организаций. В данном случае, ответственность за определение размера страхового взноса по результатам проверки возлагается на третью сторону – независимую страховую компанию. Документом проверки служит экспертное заключение. Заинтересованность сторон в получении объективной информации, в данном случае, продиктована зависимостью размеров страховых взносов от технического состояния объекта: в случае переоценки опасности, страховые взносы будут завышены, тогда как недооценка рисков может привести к недостаточности страховых выплат при возникновении страхового случая. Причем, в случае недооценки опасности, пострадает не только страхователь, но и сама страхования организация, вынужденная учащать выплаты по страховым случаям при заниженных по результатам технической экспертизы тарифах. Для решения вышеизложенной проблемы целесообразно привлечение независимых страховых компаний, использующих современные технологии проверок;

для обеспечения эффективного взаимодействия лиц, занятых на строительстве, с государственными органами строительного надзора целесообразно указание в договорах между застройщиками и организациями, выполняющими независимый строительный контроль, закрепление обязанностей организаций по представлению интересов застройщиков перед органами государственного строительного надзора, а также предоставление необходимой информации о ходе проведения независимого строительного контроля органам государственного строительного надзора.

Рассмотренные мероприятия, направленные на создание оптимальных условий для реализации предпринимательской деятельности в сфере оценки и строительства объектов, при их последовательной реализации должны привести к снижению административных барьеров, развитию конкуренции в данном сегменте рынка, расширению кредитных возможностей застройщиков и иным положительным последствиям, способствующим развитию деловой активности в данной сфере. Также следует отметить, что внедрение системы независимого строительного контроля будет способствовать не только развитию инфраструктуры, но реализации целей антимонопольного и градостроительного регулирования, позволяя государственным органам реализовывать контроль за деятельностью застройщиков при привлечении средств участников долевого строительства. Важнейшим аспектом в обеспечении оптимального инвестиционного климата в строительстве выступает привлекательность обеспечения земельных участков коммунальной инфраструктурой в целях строительства, реконструкции и капитального ремонта объектов капитального строительства. В данном случае привлечение инвесторов может быть реализовано с помощью инструментов системы независимого строительного контроля.

В современных условиях все большую актуальность приобретает разработка систем мониторинга технического состояния строительных конструкций и их эффективное внедрение в процессы обеспечения безопасности строительных конструкций. Развитие данного направления требует не только автоматизации процессов обеспечения промышленной безопасности, но и кадрового обеспечения в виде высококвалифицированных специалистов и организаций в области проектирования, изготовления, экспертизы и эксплуатации комплексных автоматизированных систем мониторинга технического состояния строительных конструкций зданий и сооружений.

Однако специфика производственных зданий и сооружений, связанная с условиями их эксплуатации обуславливает высокие риски. К таким особенностям можно отнести следующие:

    высокий уровень механической нагруженности в сравнении с иными объектами (к основным видам такой нагруженности можно отнести статическую, малоцикловую, усталостную, вибрационную - от технологического и кранового оборудования, технологических трубопроводов);

    высокий уровень опасных продуктов, образованных от технологических процессов и газовоздушной общезаводской среды;

    уровень изношенности зданий и сооружений на ОПО, которая зачастую превышает 80%

    уровень риска возникновения чрезвычайных ситуаций (аварий и катастроф), вызванных обрушением зданий и сооружений с последующим выходом из строя из промышленного оборудования. Данные риски влекут за собой не только издержки, но и представляют опасность для окружающей среды и жизни человека. В отдельную категорию следует выделить последствия, несущие угрозу для экологического состоянию близлежащих территорий, так как в данном случае материальные издержки расцениваются миллионами долларов.

В связи со сложностью проблемы рассмотрим некоторые ключевые элементы системы управления рисками и мониторинга технического состояния зданий и сооружений ОПО.

Решение существующих проблем промышленной безопасности может обеспечить системный подход к оценке управления рисками на основе теории. Это позволит максимально повысить защищенность ОПО от аварийного разрушения при эффективном расходовании средств. Такой подход основан на применении на практике методов оценки безопасности, из которого следует, что будущее - за новыми методами оценки безопасности, оценки живучести и риска.

Разработка системы управления рисками и мониторинга технического состояния зданий и сооружений невозможна без сбора следующей информации:

    результаты анализа генерального плана предприятия, а также его технологической схемы, основных технических параметров зданий и сооружений;

    характеристику условий эксплуатации объекта, основных режимов нагружения, ремонтов и экспертиз, наиболее частых инцидентов и аварий;

    аналитические данные по результатам деятельности действующей на предприятии системы промышленной безопасности, включая уровень подготовки персонала;

Далее мониторинг технического состояния зданий и сооружений ОПО осуществляется выборочно по отдельным конструкциям, узлам или элементам здания, работоспособность которых определяет безопасную эксплуатацию всего здания.

В итоге, основными этапами разработки системы управления рисками и мониторинга технического состояния зданий и сооружений должны выступать следующие последовательно выполненные мероприятия:

    оценка и экспертиза промышленной безопасности строительных конструкций зданий и сооружений;

    комплексный анализ поверженных конструкций и технического оборудования с выявлением взаимосвязи характера повреждения;

    характеристика деградации свойств материалов конструкций;

    оценка уровня фактических и допустимых рисков.

После проведения комплекса вышеуказанных мероприятий происходит назначение уровней ответственности зданий и сооружений в соответствии с критериями риска, происходит определение критически важных зон конструкций и узлов.

Целью такого комплексного мониторинга технического состояния зданий и сооружений является реализация безаварийной непрерывной эксплуатации объекта мониторинга. Данная цель определяет круг задач комплексного мониторинга технического состояния зданий и сооружений:

    обнаружение дефектов в конструкции до возникновения аварийного случая;

    непрерывный анализ технического состояния объекта, реализуемого путем сбора, обработки и хранения данных технического диагностирования.

    прогнозирование изменения технического состояния конструкций во времени на основе регулярного мониторинга технического состояния объектов;

    автоматизация и оптимизация процессов диагностики технического состояния объектов.

Этапы создания такой системы предусматривают: выбор методов неразрушающего контроля, оптимальных для решения задач мониторинга; определение типов и характеристик датчиков и других источников объективной информации; разработка программных комплексов, системы критериев и принятие решений; разработка и изготовление аппаратурной части системы; опытная эксплуатация; составление рекомендаций по действиям в критических ситуациях.

Современное приборостроение способно удовлетворить требования к приборам и оборудованию неразрушающего контроля и определения напряженно-деформированного состояния. Методы, используемые в комплексном мониторинге: акустическая эмиссия; вибродиагностика; тепловидение; измерение напряженно-деформированного состояния, линейных перемещений и углов наклона; метод свободных колебаний для элементов конструкций, зданий и сооружений в целом; измерение параметров газовоздушной среды внутри и снаружи зданий и сооружений, параметров сейсмологической и геотектонической обстановки в зоне нахождения зданий и сооружений ОПО.

Важные элементы системы комплексного мониторинга - разработка и ведение баз данных (электронных паспортов) зданий и сооружений ОПО, позволяющие в режиме реального времени получать информацию о техническом состоянии объекта.

В заключение следует отметить, что в области промышленной безопасности зданий и сооружений ОПО внедрение системы комплексного мониторинга технического состояния и рисков зданий и сооружений ОПО целесообразно начинать с уникального и высокорискового класса зданий и сооружений - на крупных и ответственных промышленных объектах гражданского и оборонного назначения. Именно для них определение безопасности по критериям риска аварий и катастроф будет наиболее эффективным оснащением системами мониторинга.

Таким образом, эффективная модернизация системы обеспечения промышленной безопасности зданий и сооружений ОПО возможна только с применением методов комплексного мониторинга технического состояния объектов и автоматизации процессов диагностики.

Министерство сельского хозяйства Российской Федерации

«Московский Государственный Университет Природообустройства»

Строительный факультет

Кафедра экспертизы и управления недвижимостью

на тему: «Мониторинг зданий и сооружений»

Выполнили

студентки группы 419 В.И. Рыбина

Н.С. Филатова

Проверил В.Я. Жарницкий

Москва2011 г.


Введение

Основные термины

1. Общие правила проведения обследования и мониторинга технического состояния зданий и сооружений

2. Мониторинг технического состояния зданий и сооружений. Основные положения

3. Общий мониторинг технического состояния зданий и сооружений

4. Мониторинг технического состояния зданий и сооружений, находящихся в ограниченно работоспособном или аварийном состоянии

5. Мониторинг технического состояния зданий и сооружений, попадающих в зону влияния нового строительства, реконструкции или природно-техногенных воздействий

6. Мониторинг технического состояния уникальных зданий и сооружений

7. Общие требования к проектированию и разработке автоматизированных стационарных систем мониторинга технического состояния зданий (сооружений)

8. Требования к мониторингу общей безопасности объектов (с комплексной оценкой риска от аварийных воздействий природного и техногенного характера)

9. Геотехнический мониторинг зданий и сооружений (включая геодезический мониторинг)

10. Организация мониторинга зданий и сооружений в городе Москва

11. Примеры проектирования и эксплуатации схем мониторинга конструкций и оснований высотных зданий

Литература

Приложения


Введение

Для современного этапа экономического и общественного развития в России характерно расширение строительного производства и проведение масштабного строительства в крупных городах, в первую очередь, в Москве и Санкт-Петербурге, сопровождающееся постоянным ростом сложности возводимых объектов и условий, в которых осуществляется их строительство. Это неизбежно порождает новые задачи, связанные с обеспечением безопасной жизнедеятельности в условиях мегаполиса, определяющейся, во-первых, надежностью самих строящихся сооружений, и, во-вторых, влиянием проводимого строительства на уже существующую инфраструктуру.

Современные тенденции в строительстве, а именно - увеличение этажности зданий, уплотнение городской застройки, стесненность строительных площадок, освоение подземного пространства, насыщение инженерными коммуникациями неизменно приводят к возникновению и последующему увеличению негативного техногенного воздействия проводимого строительства на уже построенные объекты, расположенные в прилегающих зонах.

В связи с этим особое значение приобретает проблема контроля технического состояния зданий и сооружений с целью предупреждения возникновения аварийных ситуаций и обоснованность выбора комплекса инженерных мероприятий по их недопущению. При этом очевидно, что контроль технического состояния несущих конструкций должен носить систематический характер и позволять осуществлять оценку происходящих изменений на основе количественных критериев, т.е. базироваться на процедурах выявления соответствия фактической прочности, жесткости и устойчивости конструктивных элементов нормативным требованиям.

В настоящее время в г.Москва проводятся работы по обследованию технического состояния отдельных объектов. Однако большое количество зданий и сооружений не охвачено вообще никаким контролем, хотя жизнедеятельность города динамично приводит как к ухудшению свойств грунтов, так и к негативным воздействиям силового и не силового характера на наземные конструкции зданий и сооружений. Все это в условиях исчерпания нормативных сроков эксплуатации большого количества объектов не допустимо и требует системно организованных наблюдений. Ведь сроки эксплуатации многих зданий в нашей стране давно превысили все допустимые нормы, происходит накопление физического износа, что крайне опасно для жизнедеятельности людей. Такие здания нуждаются в постоянном контроле их технического состояния. И если в Москве и Санкт-Петербурге производится хоть какой-то контроль технического состояния зданий, то на периферии этот вопрос до сих пор остается без внимания.

Основные термины

Здание - результат строительства, представляющий собой объемную строительную систему, имеющую надземную и (или) подземную части, включающую в себя помещения, сети инженерно-технического обеспечения и системы инженерно-технического обеспечения и предназначенную для проживания и (или) деятельности людей, размещения производства, хранения продукции или содержания животных.

Сооружение - результат строительства, представляющий собой объемную, плоскостную или линейную строительную систему, имеющую наземную, надземную и (или) подземную части, состоящую из несущих, а в отдельных случаях и ограждающих строительных конструкций и предназначенную для выполнения производственных процессов различного вида, хранения продукции, временного пребывания людей, перемещения людей и грузов.

Уникальные здания и сооружения – сооружения, на которые в проектной документации предусмотрена хотя бы одна из следующих характеристик:

Использование конструкций и конструктивных систем, требующих применения нестандартных методов расчета, либо разработки специальных методов расчета, либо требующих экспериментальной проверки на физических моделях, а также применяемых на территориях, сейсмичность которых превышает 9 баллов;

Высота более 100 м;

Пролет более 100 м;

Вылет консолей более 20 м;

Заглубление подземной части ниже планировочной отметки земли более чем на 10 метров.

К уникальным зданиям и сооружениям следует относить, также, зрелищные, спортивные, культовые сооружения, выставочные павильоны, многофункциональные офисные, торгово-развлекательные комплексы и т.п. с максимальным расчётным пребыванием более 1000 человек внутри объекта или более 10000 человек вблизи объекта.

Жизненный цикл здания или сооружения - период, в течение которого осуществляются инженерные изыскания, проектирование, строительство (в том числе консервация), эксплуатация (в том числе текущие ремонты), реконструкция, капитальный ремонт, снос здания или сооружения.

Воздействие - явление, вызывающее изменение напряженно-деформированного состояния строительных конструкций и (или) основания здания или сооружения.

- механическая сила, прилагаемая к строительным конструкциям и (или) основанию здания или сооружения и определяющая их напряженно-деформированное состояние

Нормальные условия эксплуатации - учтенное при проектировании состояние здания или сооружения, при котором отсутствуют какие-либо факторы, препятствующие осуществлению функциональных или технологических процессов.

Динамические параметры зданий и сооружений - параметры зданий и сооружений, характеризующие их динамические свойства, проявляющиеся при динамических нагрузках, и включающие в себя периоды и декременты собственных колебаний основного тона и обертонов, передаточные функции объектов, их частей и элементов и др.

Физический износ здания - ухудшение технических и связанных с ними эксплуатационных показателей здания, вызванное объективными причинами.

Моральный износ здания - постепенное (во времени) отклонение основных эксплуатационных показателей от современного уровня технических требований эксплуатации зданий и сооружений.

Текущее техническое состояние зданий и сооружений - техническое состояние зданий и сооружений на момент их обследования или проводимого этапа мониторинга.

Аварийное состояние - категория технического состояния строительной конструкции или здания и сооружения в целом, включая состояние грунтов основания, характеризующаяся повреждениями и деформациями, свидетельствующими об исчерпании несущей способности и опасности обрушения и (или) характеризующаяся кренами, которые могут вызвать потерю устойчивости объекта.

Обследование - комплекс мероприятий по определению и оценке фактических значений контролируемых параметров, характеризующих эксплуатационное состояние, пригодность и работоспособность объектов обследования и определяющих возможность их дальнейшей эксплуатации или необходимость восстановления и усиления.

Мониторинг - это систематическое или периодическое наблюдение за деформационно-напряжённым состоянием конструкций, или деформациями зданий (или сооружений) в целом, за состоянием грунтов, оснований и подземных вод в зоне строительства, своевременная фиксация и оценка отступлений от проекта, требований нормативных документов, сопоставление результатов прогноза взаимного влияния объекта и окружающей среды с результатами наблюдений с целью оперативного предупреждения или устранения выявленных негативных явлений и процессов.

Общий мониторинг технического состояния зданий и сооружений - система наблюдения и контроля, проводимая по определенной программе, утверждаемой заказчиком, для выявления объектов, на которых произошли значительные изменения напряженно-деформированного состояния несущих конструкций или крена, и для которых необходимо обследование их технического состояния (изменения напряженно-деформированного состояния характеризуются изменением имеющихся и возникновением новых деформаций или определяются путем инструментальных измерений).

Мониторинг технического состояния зданий и сооружений, попадающих в зону влияния строек и природно-техногенных воздействий - система наблюдения и контроля, проводимая по определенной программе на объектах, попадающих в зону влияния строек и природно-техногенных воздействий, для контроля их технического состояния и своевременного принятия мер по устранению возникающих негативных факторов, ведущих к ухудшению этого состояния.

С чего начинается мониторинг

Мероприятия по мониторингу фактического состояния архитектурного объекта и его способности к дальнейшему использованию, согласно положениям технических стандартов и иных документов, проводят для сданных в эксплуатацию зданий и сооружений.

Перечислим основные цели этих мероприятий.

  • отслеживание любых изменений общего состояния действующих и эксплуатируемых строений. Эти данные позволяют разрабатывать адекватные и своевременные решения для противостояния любым негативным факторам, способным привести к аварии или разрушению здания;
  • обнаружение элементов и деталей контролируемого объекта, подвергшихся воздействиям, изменивших состояние несущих деталей строительных конструкций. Здесь необходимо узнать, не произошло ли деформации деталей или перераспределения напряжений. В этом случае возникает необходимость экспертного освидетельствования объекта;
  • гарантия безопасного использования строительных объектов и их безаварийного функционирования. Она обеспечивается за счет того, что регулярные проверки позволяют своевременно выявить в деталях конструкции и сегментах грунтов потенциально опасные трансформации напряженностей или деформации, и вовремя принять необходимые меры для предотвращения смены состояния проверяемого здания из работоспособного на ограниченно работоспособное, либо - что еще хуже - на аварийное;
  • постоянный контроль любых изменений фактического технического состояния каждого конкретного здания, объективная оценка степени происходящих в нем перемен и их скорости. Владение такой информаций позволяет оперативно принимать нужные меры по предотвращению резкого ухудшения состояния всего объекта.

Принятые в отрасли процедуры, используемые для профессионального контроля состояния строительных объектов, служат одной задаче - выявление подвергшихся изменениям объектов конструкции здания. Ели их текущее состояние распределения напряженностей и наличие деформаций вызывают у специалистов определенные опасения, то потребуется неотложное и боле тщательно обследование объекта.

Мониторинг аварийных строительных объектов, а также зданий в состоянии ограниченной работоспособности

В ходе текущей проверки актуального состояния тех используемых строений, которые не могут быть признаны полностью работоспособными или считаются аварийными, требуется постоянно мониторить естественные процессы, происходящие как в грунтах опирания, так и непосредственно в элементах конструкциях объектов. Эти мероприятия выполняются как до начала любых работ, направленных на реконструкцию, восстановление или упрочнение зданий, так и на постоянной основе в процессе ремонтных мероприятий.

Мониторинг фактической ситуации с тем, что происходит в конструкциях объекта и в окружающих его грунтах, предполагает, что на каждой стадии выполняемых в здании восстановительных работ проводятся следующие мероприятия:

  • определение динамических показателей объекта в данный момент времени и сравнение их с цифрами, зафиксированными на предыдущем этапе работ;
  • оценка степени того, как по ходу работы изменилось состояние повреждений конструкции и дефектов ее элементов, которые были зафиксированы ранее, а также фиксация вновь обнаруженных изъянов;
  • повторные измерения всех ранее учтенных изменений, перекосов, перегибов, кренов, трещин, деформаций и т.п. и сравнение полученных данных измерений с аналогичными показателями на предыдущей стадии работ;
  • всесторонний анализ информации, полученной в ходе осуществления мониторинга на данном этапе;
  • формулировка промежуточного заключения о фактическом техническом состоянии здания на данный момент.

Мониторинг технического состояния строительных объектов, находящихся в зоне новой застройки, попадающих в область работ по реконструкции зданий или в сферу влияния природных или техногенных воздействий

Главные задачи мониторинга текущего состояния зданий и сооружений, оказавшихся в зоне текущего строительства или попавших в район, где фиксируются природно-техногенные воздействия, можно сформулировать следующим образом:

  • требуется определить абсолютные показатели текущей деформации строительных конструкций, рассчитать их стандартные относительные величины и сравнить со стандартными допусками и расчетными значениями;
  • необходимо установить причины появления деформаций и объективно оценить уровень их потенциальной угрозы штатному функционированию объектов;
  • нужно выяснить текущие характеристики физико-механического состояния грунтов, и с их учетом уточнить имеющиеся данные расчетов;
  • крайне важно предпринять все необходимые шаги как для противостояния возникновению новых деформаций, так и для эффективного устранения последствий уже имеющихся разрушений;
  • настоятельно рекомендуется проверить расчетные схемы для попадающих в зону воздействия зданий, строений, сооружений и объектов коммуникаций различных типов;
  • требуется постоянно фиксировать степень эффективности мероприятий, проводимых в целях защиты зданий и профилактики ухудшения их состояния;
  • необходимо выяснить закономерности и вектора, по которым сдвигаются грунтовые породы, а также установить, как зависят основные параметры этого процесса от основных внешних и внутренних факторов.

Проверка состояния уникальных объектов, зданий и сооружений

В целях обеспечения безаварийного использования и безопасного функционирования уникальных архитектурных или градостроительных объектов выполняется периодический или непрерывный технический мониторинг текущего состояния всех элементов их конструкций.

Данные, полученные в ходе таких контрольных измерений, являются основой, которая определит перечень работ, допустимых к выполнению на этих объектах. В ходе мониторинга технического состояния уникальных зданий осуществляется проверка всех физических и химических процессов, протекающих в глубине конструкций этих сооружений и в прилегающем к ним грунте. Это позволяет инженерам на самой ранней стадии обнаруживать любые негативные тенденции, приводящие к неблагоприятным переменам в состоянии архитектурных элементов строения, тех или иных его несущих конструкций, фрагментов фундамента той или иной величины и т. п.

Владея такой информацией и учитывая ее изменения в оперативной обстановке, инженер легко спрогнозирует, какая именно ситуация способна привести к тому, что рассматриваемый градостроительный объект утрачивает возможность рабочей эксплуатации и меняет свое фактическое состояние на «аварийное» или на состояние «ограниченной готовности». Эта же информация позволяет разработать план необходимых мероприятий для своевременного противодействия любым разрушительным процессам, зафиксированным в ходе мониторинга.

Новое на сайте

>

Самое популярное