Домой Микрозаймы Производство солнечной энергии в мире. Солнечная энергетика в россии и мире

Производство солнечной энергии в мире. Солнечная энергетика в россии и мире

Запустило программу электроснабжения фермерских хозяйств за счет технологий солнечной энергетики . Механизм поддержки предусматривает выделение фермерам субсидий на покупку энергетического оборудования, необходимого для ведения хозяйственной деятельности. Субсидии покрывают 95% расходов на энергоустановку и не включают налоговые выплаты. Оставшиеся 5% стоимости оплачивает фермер. Подробнее .

В Республике Калмыкия введена в эксплуатацию первая в регионе солнечная электростанция

В Черноземельском районе Республики Калмыкия введена в эксплуатацию первая в регионе солнечная электростанция. Об этом 21 августа 2019 года сообщила компания Hevel , построившая солнечную электростанцию.Подробнее .

Выпуск заводом «Хевел» 311 тыс. солнечных модулей мощностью 98 МВт

19 июля 2019 года группа компаний «Хевел» сообщила о том, что в первом полугодии 2019 года завод по производству солнечных модулей выпустил более 311 тысяч высокоэффективных гетероструктурных солнечных модулей общей мощностью 98,2 МВт, что на 18% больше чем за аналогичный период прошлого года. Подробнее .

Елшанская солнечная электростанция мощностью 25 МВт введена в эксплуатацию

«Хевел» увеличила годовой объем выпуска солнечных модулей в Новочебоксарске до 260 МВт

В России создали новый полупроводниковый материал для солнечных батарей

Группа российских ученых создала новый полупроводниковый материал без использования свинца, который может быть применен в солнечных батареях для повышения их эффективности. Об этом в 13 мая 2019 года сообщила пресс-служба одного из участников исследования Сколковского института науки и технологий (Сколтеха).


Большой интерес для использования в настоящее время представляют солнечные батареи на основе комплексных галогенидов свинца, то есть соединения свинца с элементами 17-й группы периодической таблицы Менделеева (фтором, хлором, бромом или иодом), с перовскитной структурой - напоминающей структуру минерала перовскита, кристаллы которого имеют кубическую форму. Такие батареи отличаются низкой стоимостью, простотой изготовления и высокой эффективностью преобразования света.

Массовое производство и внедрение перовскитных батарей в настоящее время ограничивается двумя факторами: низкой стабильностью комплексных галогенидов свинца и токсичностью этих соединений. Поэтому во всем мире активно ведется разработка альтернативных бессвинцовых материалов, в частности на основе галогенидов висмута и сурьмы. Однако все ранее полученные образцы имеют низкую эффективность преобразования света. Команда российских ученых доказала, что причиной является неоптимальное строение соединений висмута и сурьмы.


Физики разработали принципиально новый материал для солнечных батарей на основе перовскитоподобного комплексного бромида сурьмы (ASbBr6, где А является органическим положительно заряженным ионом). Солнечные батареи на основе этого материала показали рекордные для галогенидов сурьмы и висмута КПД преобразования света. По словам Трошина, эта работа открывает принципиально новые возможности для развития перовскитной электроники.

"Хевел" построит в Башкирии солнечную электростанцию с накопителем энергии

25 апреля 2019 года группа компаний «Хевел » сообщила, что до конца 2019 года построит в России гибридную солнечную электростанцию с промышленными накопителями энергии. Солнечная генерация общей мощностью 10 МВт будет расположена в Бурзянском районе Республики Башкортостан . Подробнее .

Найден нетоксичный способ получения нанокремния для применения в покрытиях солнечных батарей

13 февраля 2019 года стало известно о том, что ученые МГУ нашли нетоксичный способ производства кремниевых наноматериалов. При производстве кремниевых наноструктур, востребованных в разных областях промышленности , как правило, используется достаточно токсичная плавиковая кислота. Сотрудники МГУ имени М.В. Ломоносова нашли способ, как избежать ее применения. Открытие ученых МГУ может найти применение в промышленном производстве основанных на нанокремнии антиотражающих покрытий для солнечных батарей, оптических сенсоров для обнаружения различных молекул, наноконтейнеров для доставки лекарств . Исследование выполнено при поддержке Российского научного фонда (РНФ), его результаты опубликованы в международном журнале Frontiers in Chemistry. Подробнее .

В Ульяновской области построят завод по производству солнечных панелей

В январе во время рабочего визита в Китай делегация с губернатором Ульяновской области посетила предприятие технологического партнера австрийской компании Green Source для ознакомления с продукцией компании и обсуждения предстоящего строительства завода по производству солнечных панелей на территории Ульяновской области. Договоренность о строительстве такого завода была достигнута с австрийскими компаниями еще в прошлом году.

"В конце 2018 года мы договорились с австрийскими компаниями о строительстве в Ульяновской области предприятия по производству фотоэлектрических модулей для солнечных электростанций с использованием перспективной технологии", - сообщил губернатор Морозов 19 января на своей странице в фейсбуке.

2018

Четыре солнечные электростанции мощностью 100 МВт будут работать в Бурятии к 2022 году

Четыре солнечные электростанции (СЭС) общей мощностью 100 МВт будут работать в Бурятии к 2022 году. Об этом сообщил в понедельник и.о. министра по развитию транспорта , энергетики и дорожного хозяйства Алексей Назимов, выступая на заседании Совета по науке при главе Бурятии Алексее Цыденове .

Владельцам солнечных батарей на домах разрешат продавать электричество

Выкупать электроэнергию обяжут местные сбытовые компании по средней цене, пояснили в пресс-службе министерства. Ориентиром станет стоимость энергии у местных крупных электростанций. Владельцам частных домов в районах, не имеющих доступа к единой электросети России или же не включенных в ценовые зоны европейской части РФ и Урала с Сибирью (к примеру, Калининградская область и Дальний Восток) ее разрешат продавать по регулируемому ФАС тарифу. Претендовать на гарантированный выкуп энергии смогут установки не мощнее 15 кВт.

Не исключено, что владельцам ветряков и солнечных панелей в частных домах также установят налоговые льготы. Их доход от продажи лишней электроэнергии в размере до 150 тыс. руб. в год могут освободить от НДФЛ. Соответствующий вопрос рассматривается в правительстве.

Т Плюс начинает строительство крупнейших в России солнечных станций

- Развитие "зеленой" энергетики – ключевое направление работы Правительства области по освоению альтернативных видов топлива и сохранению окружающей среды. В области уже работают пять солнечных электростанций. Крупнейшая из них построена в Орске компанией "Т Плюс". С пуском второй очереди ее мощность возросла до 40 мегаватт. Солнечные электростанции действуют в Переволоцком, Грачевском, Красногвардейском, Соль-Илецком районах, – сказал Юрий Берг. – Сегодня мы делаем важный шаг вперед – начинаем строительство еще двух объектов альтернативной энергетики. Наша задача – укрепить передовые позиции Оренбургской области в развитии альтернативной энергетики. Мы эту задачу выполним, и к 2020 году мощность всех солнечных электростанций Оренбуржья составит более 200 мегаватт. Сегодня экологический аспект приобретает решающее значение для определения качества и уровня комфортности жизни человека. Это является приоритетом президентской политики. Развитие альтернативной энергетики – это взгляд в будущее, – констатировал глава региона.

2017

Итоги развития солнечной энергетики за год

Первый заместитель Министра энергетики РФ Текслер Алексей Леонидович выступил в январе 2018 года на министерском круглом столе "Инновации для трансформации энергетики: как электротранспорт/электромобили изменяют энергосистему", который прошел в рамках восьмого заседания Ассамблеи IRENA.

Алексей Текслер рассказал участникам дискуссии о развитии ВИЭ в России . По его словам, совсем недавно в России, кроме большой гидроэнергетики, не было компетенций в сфере ВИЭ и за несколько лет был сделан большой шаг вперед .

"Главный итог 2017 года, который я готов констатировать – возобновляемая энергетика в России состоялась как отрасль", - подчеркнул замглавы.

Практически с нуля в России создана своя индустрия в солнечной энергетике, от исследований до производства солнечных панелей и строительства генерирующих станций. За 2017 год было построено больше мощностей возобновляемых источников энергии, чем за предыдущие два года. В 2015-2016 годах в России были введены 130 МВт ВИЭ, а в 2017 году построено 140 МВт, из них более 100 МВт солнечные электростанции, а 35 МВт – первый крупный ветропарк , запуск которого состоится в ближайшее время.

В числе ключевых достижений Первый заместитель Министра энергетики отметил также запуск производства солнечных панелей нового поколения на основе отечественной гетероструктурной технологии. Россия стала производить модули с КПД выше 22%, которые по этому показателю входят в мировую тройку лидеров по эффективности в серийном производстве. В этом году планируется увеличить мощность производства завода со 160 МВт до 250 МВт.

Алексей Текслер выразил уверенность в том, что, как и в солнечной энергетике, в ближайшие три года будет создана индустрия ветровой энергетики . Уже за 2016-2017 гг. в российскую ветроэнергетику пришли крупные российские и иностранные инвесторы, которые взяли обязательства по развитию технологической и производственной базы в России.

В Башкортостане введена в эксплуатацию Исянгуловская солнечная электростанция

В Зианчуринском районе Республики Башкортостан осенью 2017 года введена в эксплуатацию Исянгуловская солнечная электростанция (СЭС) мощностью 9 МВт.

Инвестором и генеральным подрядчиком проекта выступают структуры группы компаний "Хевел " (совместное предприятие Группы компаний "Ренова " и АО РОСНАНО). К строительству также были привлечены местные подрядные организации. После завершения всех регламентных процедур станция начнет плановые поставки электроэнергии в сеть. Инвестиции в строительство станции составили более 1,5 млрд рублей.

В 2015-2016 гг. в Республике Башкортостан были построены и введены в эксплуатацию Бугульчанская СЭС общей мощностью 15 МВт, а также Бурибаевская СЭС мощностью 20 МВт. С момента выхода на оптовый рынок электроэнергии и мощности станции выработали более 40 ГВт*ч чистой электроэнергии.

С вводом Исянгуловской СЭС установленная мощность солнечной генерации в регионе достигла 44 МВт. Новый объект стал третьим из пяти, которые "Хевел" планирует построить в Башкортостане в ближайшие годы. Суммарная мощность всех СЭС в регионе составит 64 МВт, а общий объём инвестиций оценивается более чем в 6 млрд рублей.

Ученые нашли способ повышения эффективности солнечных батарей

Российские и швейцарские сследователи изучили влияние на структуру и производительность солнечных батарей изменения соотношения компонентов, из которых формируется светопоглощающий слой перовскитной солнечной ячейки. Результаты работы опубликованы в журнале Journal of Physical Chemistry C .

Впервые органо-неорганические перовскиты были разработали пять лет назад, но по КПД они уже обогнали наиболее распространенные и более дорогие кремниевые солнечные элементы. В структуре перовскитов находятся кристаллические соединения, в котором располагаются молекулы растворителя исходных компонентов. Растворенные компоненты, выпадая из раствора, образуют пленку, на которой растут кристаллы перовскита. Ученые выделили и описали три промежуточных соединения, которые являются кристаллосольватами одного из двух растворителей, наиболее часто используемых при создании перовскитных солнечных батарей. Для двух соединений ученые впервые установили кристаллическую структуру.

«Мы выяснили, что ключевым фактором, определяющим функциональные свойства перовскитного слоя, является образование промежуточных соединений, поскольку кристаллиты перовскита наследуют форму промежуточных соединений. Это, в свою очередь, влияет на морфологию пленки и эффективность солнечных батарей. Это особенно важно при получении тонких пленок перовскита, поскольку игольчатая или нитевидная форма кристаллов приведет к тому, что образованная пленка будет несплошной, а это значительно снизит КПД такой солнечной ячейки», - отметил руководитель исследования Алексей Тарасов.

Дополнительно авторы исследовали термическую стабильность полученных соединений и с помощью квантово-химического моделирования рассчитали энергию их образования. Также авторы выяснили, что кристаллическая структура промежуточного соединения задает форму образующихся кристаллов перовскита, что определяет структуру светопоглощающего слоя. Эта структура, в свою очередь, влияет на производительность получаемой солнечной батареи.

Исследование было проведено научными сотрудниками МГУ в сотрудничестве с учеными Курчатовского центра синхротронного излучения, Российского университета дружбы народов , СПбГУ и Федеральной политехнической школы Лозанны в Швейцарии .

Завод Вексельберга начинает выпуск солнечных батарей на экспорт

«Хевел» в Оренбургской и Астраханской областях

В октябре губернатор Астраханской области Александр Жилкин и генеральный директор ГК «Хевел» Шахрай Игорь подписали двухстороннее соглашение, предусматривающее постройку и введение в эксплуатацию трёх сетевых солнечных электростанций.

В течение двух лет на территории региона появятся мощности для выработки 135 МВт энергии с перспективами увеличения до 160 МВт. Инвестиционная стоимость проекта – 15 млрд рублей. Планируется, что уже к концу года одну электростанцию достроят и введут в эксплуатацию. СЭС принесут в казну области дополнительные налоговые поступления. По словам Игоря Шахрая, за каждые 10 МВт энергии в год будет отчисляться 100 млн рублей налогов. Гендиректор ООО «Хевел» отметил, что астраханская земля – самая солнечная на юге России . Кроме того, в регионе имеется наработанная схема для подключения к основным энергосетям. В дополнение к этому власти всячески поддерживают и стремятся развивать направление чистой энергетики в области. Всего до конца года в регионе будут введены 6 СЭС суммарной мощностью 90 МВт.

2015 год

Мировая солнечная энергетика вплотную подходит к той стадии, когда производство электроэнергии с помощью Солнца начинает окупаться обычным, не повышенным тарифом, стоимость материалов и величина необходимых инвестиций резко падают, так как технологии развиваются и начинает сказываться эффект объема (много производить дешевле, чем мало). В сравнении с 2014 годом объем выработанной энергии на основе СЭС в мире вырос на треть. На конец 2015 года совокупная установленная мощность фотоэлектрических солнечных установок в мире составила 227 ГВт, за год установленные мощности солнечных электростанций увеличились в 2 раза. Если раньше мировым лидером по развитию возобновляемой энергетики была Европа , то в прошлом году пальму первенства перехватил Китай .

Плавучий остров-панель оказался востребованным на рынке чистой энергии, многие страны взяли этот метод получения электроэнергии на вооружение. Например, в Чили , где добыча полезных ископаемых требует постоянных затрат энергии и воды: положив солнечную панель на гладь многочисленных озер, правительство удешевило добычу ископаемых и снизило углеродный след.

Плавучие панели-батареи пока что проходят испытания на шахте Лос-Бронкес, поблизости которой создан экспериментальный энергетический остров - проект «Лос Тортолас» финансируется компаниями из Великобритании и США , площадь солнечных батарей составляет пока 112 квадратных метров, чилийский министр горнодобывающей промышленности Бальдо Прокурица. В апреле Тортолас был торжественно открыт, плавучая батарея обошлась в 250 тысяч долларов , но в случае успеха площадь будет расширена до 40 гектаров.

По мнению экспертов, в Чили у солнечной энергетики огромные перспективы. В стране порядка 800 прудов, которые можно использовать для установки плавучих солнечных электростанций (СЭС). По задумке инженеров, батарею-поплавок помещают в центр водного массива, который используется для хранения «хвостов» (отходов от добычи полезных ископаемых). Таким образом достигается тройная польза:

  • тень снижает температуру воды пруда;
  • испарение воды снижается на 80%;
  • производствоудешевляется многократно, работая на энергии солнца.

Экологи аплодируют такому плану, ведь в шахте остается куда больше воды для естественного баланса, такой подход способен уменьшить региональный расход и без того дефицитной пресной воды.

С помощью этой системы Чили рационализирует потребление свежей воды в соответствии с поставленной целью усовершенствования процесса добычи полезных ископаемых и сокращения потребления пресной воды на 50% к 2030 году. Углеродный след автоматически снижается тоже за счет производства экологически чистой энергии.

Чили постепенно наращивает долю чистой энергии

Шахта Лос-Бронкес расположена в 65 км от столицы Чили на высоте 3,5 км над уровнем моря. Почти 20% энергии, которая в производится и используется в латиноамериканской стране в 2019 году - чистая. В 2013 году показатель был равен всего шести процентам, что демонстрирует уверенный рост доли зеленой энергетики в народном хозяйстве страны и ее приверженность целям Парижского климатического соглашения (2015).

Разработки инженеров из Ciel & Terre, а также финансовая помощь дали Чили возможность расширить горизонты энергетического рынка и вырваться из порочного круга, в котором электроэнергию получают путем сжигания полезных ископаемых. Плавучие солнечные панели просты в монтаже, техобслуживании и управлении. Термопластик высокой плотности, установленный под углом 12 градусов, полностью экологичен и пригоден для вторичной переработки. Плавучая СЭС не вредит природе, экономически выгодна и гибка в настройках.

По словам чилийских инженеров, это простая и доступная альтернатива наземным объектам солнечной энергетики. Это идеальный вариант для водоемких отраслей промышленности, ограниченных в потреблении воды или земельных площадях.

«Хевел» построит в Казахстане солнечную электростанцию мощностью 100 МВт

Энергия холода: "антисолнечная батарея" работает по ночам

Инженеры создали устройство, которое можно назвать солнечной батареей навыворот: оно вырабатывает ток не когда поглощает фотоны, а когда излучает их. Такой источник энергии мог бы питать различное оборудование по ночам, отдавая в космос тепло, запасённое поверхностью Земли .

Как известно, нагретые тела испускают излучение. В этом легко убедиться, поднеся руку к горячей батарее (лучше сбоку, чтобы не мешал восходящий поток тёплого воздуха). Если объект не получает из внешней среды столько же тепловой энергии, сколько излучает, он остывает. Чтобы предмет охлаждался эффективнее, нужно предоставить ему свободно обмениваться фотонами с как можно более холодной средой.

Ещё в XX веке физики теоретически рассчитали, а в последние годы экспериментально продемонстрировали эффект отрицательной освещённости. Он заключается в том, что фотодиод может вырабатывать электричество не только поглощая приходящие из внешней среды фотоны (как в обычной солнечной батарее), но и, наоборот, отдавая их и за счёт этого охлаждаясь. На этот процесс тратится энергия, запасённая в устройстве в виде тепла.

Для работы такого устройства нужна холодная среда, в которую фотоны будут уходить, не возвращаясь обратно. И такая среда у нас под рукой, вернее, над головой: это открытый космос.


Разумеется, если такой излучатель просто запустить на орбиту (и не дать ему нагреваться от Солнца, держа в тени), он быстро высветит всё своё тепло, сравняется по температуре с космическим вакуумом и перестанет вырабатывать энергию.

Однако на Земле можно обеспечить ему тепловой контакт с поверхностью планеты. Как только фотоэлемент станет холоднее окружающих тел, дефицит энергии будет восполнен за счёт теплопроводности. Благодаря этому фотоны будут всё так же исправно улетать в ледяное космическое пространство через атмосферу, которая достаточно прозрачна на длинах волн от 8 до 13  микрометров (узкая полоса в среднем инфракрасном диапазоне). Часть энергии покидающего установку излучения будет преобразовываться в электрическую.

Именно такое устройство и создали авторы новой работы. В качестве материала для фотодиода они выбрали соединение ртути, кадмия и теллура (HgCdTe). Это вещество эффективно излучает именно в нужном диапазоне длин волн. Пройдя сквозь полусферическую линзу из арсенида галлия (GaAs) и окно из феррида бария (BaFe2), фотоны попадают на параболическое зеркало, отправляющее их прямо в небо. Чтобы попасть на диод из внешней среды, излучению требуется пройти такой же путь в обратную сторону. Все эти ухищрения нужны для того, чтобы установка обменивалась фотонами практически исключительно с космосом, а энергию от Земли получала за счёт теплопроводности.

Экспериментальная установка в опытах группы Фаня генерировала 64 нановатта на квадратный метр поверхности. Разумеется, от такой мощности нельзя запитать приборы. Однако, как рассчитали авторы, теоретический предел с учётом влияния атмосферы составляет 4 ватта на квадратный метр. Это гораздо меньше, чем у современных солнечных батарей (100–200 ватт на квадратный метр), но вполне достаточно для питания некоторых устройств.

Чтобы приблизить мощность установки к этой отметке, нужно подобрать для фотодиода материал с более выраженным эффектом отрицательной освещённости. В настоящее время исследователи заняты поисками такого вещества.

2018

Рынок солнечной энергетики ЕС вырос за год на 36%

Опубликованы предварительные данные о развитии солнечной энергетики в европейских странах. По-прежнему лидирует Германия , на второе место вышла Турция, третье место досталось Нидерландам.

Согласно статистике Ассоциации солнечной энергетики SolarPower Europe, европейский рынок значительно вырос в 2018 году. В 28 странах ЕС было введено в эксплуатацию 8 ГВт солнечных электростанций – это на 36% больше, чем в 2017 году. При этом 11 стран уже перевыполнили взятые на себя обязательства по внедрению ВИЭ и вышли на уровень 2020 года. Более широкий еврорынок, включающий Турцию, Россию , Украину, Норвегию, Швейцарию, Сербию, Белоруссию, также показал рост на 11 ГВт, что на 20% больше, чем годом ранее.

Крупнейшим рынком солнечной энергетики на европейском континенте в 2018 году в очередной раз стала Германия с новыми СЭС общей мощностью 3 ГВт. Турция за счет высоких темпов развития рынка за последние два года заняла второе место (1,64 ГВт). Нидерланды, где также был установлен национальный рекорд в 1,4 ГВт введенных в строй СЭС, разместилась по итогам года на третьем месте.

По оценкам экспертов, в 2019 году отрасль вырастет еще больше – на развитие солнечной энергетики в Европе скажутся такие факторы, как отмена пошлин на китайские солнечные панели и конкурентоспособность промышленных фотоэлектрических солнечных электростанций.

Исследователи приблизили эффективность солнечной батареи к обычной

5 октября 2018 года стало известно, что исследователи приблизили эффективность солнечной батареи к обычной. Солнечная энергия считается наиболее устойчивым вариантом замены ископаемого топлива, но технологии преобразования ее в электричество должны быть очень эффективными и дешевыми. Ученые из отдела энергетических материалов Окинавского института науки и технологий считают, что они нашли формулу для изготовления недорогих высокоэффективных солнечных батарей.

Для этого профессор Яобинг Ци, руководитель исследования, выделил три условия, которые приведут технологию к введению на рынок и успешной коммерциализации. По его словам, скорость преобразования солнечного света в электричество должна быть высокой, недорогой, а также долговечной.

На октябрь 2018 года большинство коммерческих фотоэлементов, которые используются в батареях, сделаны из кристаллического кремния. Он имеет относительно низкую эффективность - около 22%. В конечном итоге это приводит к тому, что продукт оказывается для потребителя дорогим, а его единственная мотивация для покупки - это забота о природе. Японские ученые предлагают решить проблему с помощью перовскита.

SoftBank построит в Саудовской Аравии крупнейшую солнечную электростанцию

Соответствующий меморандум о намерениях подписали в Нью-Йорке наследный принц Саудовской Аравии Мухаммед бин Сальман Аль Сауд и генеральный директор SoftBank Масаеши Сон. Принц находится в с трехнедельным официальным визитом, отмечает телеканал.

Планируемая мощность каскада солнечных батарей в 200 ГВт - это в разы больше, чем у любой существующей солнечной электростанции. Для сравнения, пиковая мощность расположенной в Калифорнии Topaz Solar Farm, одной из крупнейших подобных электростанций, составляет около 550 МВт. Энергию там аккумулируют 9 млн тонкослойных фотоэлектрических модулей.

Голландский стартап Oceans of Energy, специализирующийся на разработке плавучих систем по производству возобновляемой электроэнергии, объединился с пятью крупными компаниями, чтобы построить первую в мире солнечную электростанцию, дрейфующую в открытом море. "Такие электростанции уже работают на водоемах в материковой части разных стран. Но на море их никто не строил - это чрезвычайно трудная задача. Приходится иметь дело с огромными волнами и другими разрушительными силами природы. Однако, мы убеждены, что объединив свои знания и опыт, справимся с этим проектом", - рассказал глава Oceans of Energy Аллард ван Хоекен.
По предварительным расчетам, плавучая электростанция будет на 15% эффективнее существующих установок. Выбирать наиболее подходящие солнечные модули будет Центр исследований энергетики Нидерландов (ECN). Его специалисты считают, что это для проекта можно использовать стандартные солнечные панели, которые работают и на наземных солнечных станциях. "Посмотрим, как они поведут себя в морской воде и в неблагоприятных погодных условиях", - отметил представитель ECN Ян Кроон.

Представители консорциума подчеркивают, что плавучую солнечную электростанцию можно установить прямо между морскими ветровыми турбинами. Там более спокойные волны и уже проведены все линии электропередачи. В ближайшие три года консорциум будет работать над прототипом при финансовой поддержке государственного Агентства предпринимательства Нидерландов. А Утрехтский университет предоставит стартапу материалы своих исследований.

Стоимость солнечной энергии в Австралии упала на 44% с 2012 года

Такое увлечение возобновляемой энергии привело к тому, что люди действительно начали платить меньше за электричество. Плюсом к этому также стало то, что стоимость самой электроэнергии снизилась. С 2012 года издержки на установку и эксплуатацию солнечных панелей упали почти на половину.

В 2017 году в стране частные домовладельцы и бизнес установили панелей суммарной мощностью 1,05 ГВт. Такую оценку дает ведомство, отвечающее за вопросы чистой энергетики в стране. Власти говорят, что это рекордный показатель за всю историю. Сообщается, что в начале этого десятилетия рост возобновляемой энергетики был связан с выгодными субсидиями и налоговыми предложениями, но рост 2017 отличается: жители страны решили таким образом бороться с повышающимися тарифами на электроэнергию, и движение стало массовым.

По прогнозам BNEF, Австралия станет мировым лидером по внедрению солнечных панелей. К 2040 году 25% потребности страны в электроэнергии будет покрываться солнечными панелями на крышах. Это станет возможным из-за того, что сегодня срок окупаемости таких решений сократился до минимального с 2012 года. Пока это не значит, что традиционные электростанции Австралии уходят в прошлое, но люди становятся свободнее в вопросах обеспечения себя электроэнергией.

2017

Южная Корея в 5 раз увеличит солнечную генерацию к 2030 году

Министр торговли, промышленности и энергетики Южной Кореи обнародовал план правительства по пятикратному увеличению выработки солнечной энергии к 2030 году .

Это заявление было сделано вскоре после того, как избранный в этом году президент Мун Чжэ Ин пообещал прекратить государственную поддержку строительства новых атомных электростанций и взять курс на экологически чистые источники электроэнергии. Правительство уже отменило строительство шести ядерных реакторов в Южной Корее .

Всего страна планирует получать к 2030 пятую часть вырабатываемого электричества из возобновляемых источников. В прошлом году этот показатель составлял 7%. Для этого к назначенному сроку планируется добавить 30,8 ГВт солнечных мощностей и 16,5 ГВ ветровых. Дополнительная энергия будет поступать из крупнейших проектов, а также от частных домохозяйств и малого бизнеса, заявил министр Пайк Унгю. "Мы фундаментально изменим путь развития возобновляемой энергетики, создав условия, при которых граждане легко смогут принять участие в торговле возобновляемой энергией", - сказал он.

Это значит, что к 2022 году примерно 1 из 30 домохозяйств должно быть оборудовано солнечными панелями, сообщает Clean Technica.

Тем не менее, пока Южная Корея занимает пятое место в мире по использованию атомной энергии. В стране 24 действующих реактора, обеспечивающих приблизительно треть потребностей страны в электричестве.

BP инвестировала $200 млн в солнечную энергетику

Пустыня Атакама в Чили- одно из самых солнечных и сухих мест на планете. Логично, что именно там решили построить крупнейшую в Латинской Америке солнечную электростанцию El Romero. Гигантские солнечные панели покрывают 280 га площади. Ее пиковая мощность - 246 МВт, а в год электростанция генерирует 493 ГВт-ч энергии - достаточно, чтобы обеспечить электричеством 240 000 домов.

Удивительно, но всего пять лет назад в Чили почти не использовали возобновляемые источники энергии. Страна была зависима от соседей-поставщиков энергоносителей, которые завышали цены и заставляли чилийцев страдать от непомерных счетов за электричество. Однако, именно отсутствие ископаемого топливо привело к серьезному потоку инвестиций в возобновляемые источники, особенно в солнечную энергетику.

Сейчас Чили производит практически самую дешевую солнечную энергию в мире. Компании надеются, что страна станет "Саудовской Аравией для Латинской Америки". Чили уже присоединился к Мексике и Бразилии в первой десятке стран-производителей возобновляемой энергетики, и теперь собирается стать лидером при переходе на "чистую" энергию в Латинской Америке.

"Правительство Мишель Бачелет совершило тихую революцию, - уверен социолог Еугенио Тирони. - Ее заслугу в переходе на возобновляемые источники энергии трудно переоценить, и это определит фактор развития страны на долгие годы".

Теперь, когда олигополистический рынок энергетики в Чили открыт для конкурентной борьбы, правительство поставило новую цель: к 2025 году 20% всей энергии страны должно поступать из возобновляемых источников. А к 2040 году Чили собирается полностью перейти на "чистую" энергетику. Даже экспертам это не кажется утопией, поскольку солнечные электростанции страны при ныне существующих технологиях производят в два раза более дешевое электричество, чем угольные электростанции. Цены на солнечную энергию упали на 75%, достигнув рекордных 2,148 центов за киловатт-час.

Компании-производители сталкиваются с другой проблемой: слишком дешевое электричество не приносит особой прибыли, а содержание и замена солнечных панелей стоит недешево. "Правительству придется строить долгосрочные стратегии, чтобы чудо не стало кошмаром", - заявил генеральный директор испанского конгломерата Acciona Хосе Игнасио Эскобар.

Google полностью переходит на солнечную и ветровую энергию

Компания стала крупнейшим в мире корпоративным покупателем возобновляемой энергии, достигнув суммарной мощности 3 ГВт. Общие инвестиции Google в сферу чистой энергетики достигли $3,5 млрд, пишет в ноябре 2017 года Electrek .

Google официально переходит на стопроцентное использование солнечной и ветряной энергии. Компания подписала контракт с тремя ветровыми электростанциями: Avangrid в Южной Дакоте, EDF в Айове и GRDA в Оклахоме, суммарная мощность которых составляет 535 МВт. Теперь офисы Google по всему миру будут потреблять 3 ГВт возобновляемой энергии.

Общие инвестиции компании в сферу энергетики достигли $3,5 млрд, и 2/3 из них приходится на объекты в . Такой интерес к "чистым" источникам связан, в первую очередь, с падением стоимости солнечной и ветряной энергии на 60-80% за последние годы.

Впервые Google подписал договор о сотрудничестве с солнечной фермой в Айове мощностью 114 МВт еще в 2010 году. К ноябрю 2016 года компания уже была участником 20 проектов по возобновляемой энергетике. Полностью перейти на энергию солнца и ветра она собиралась еще в декабре 2016 года. Сейчас Google самый крупный в мире корпоративный покупатель возобновляемой энергии.

В Швеции изобрели умные стекла для окон

Ученые давно исследуют данную область и ищут применение разработке. В современном мире такая технология актуальна, так как теплопотери домов из-за окон составляют примерно 20%. Ученые считают, что их изобретение сможет также применяться для теплоизоляции различных объектов.

В Иране деревни продают электроэнергию государству

На осень 2017 года «зеленых» деревень в ИРИ более 200. Ожидается, что к весне 2018 года их число достигнет 300. "Иран сегодня сообщает", что в некоторых населенных пунктах страны солнечные батареи стоят уже десять лет. Отмечается, что самые большие объемы энергии из солнца производят в провинциях Керман, Хузестан и Лурестан .

Изначально появление альтернативных источников энергии в деревнях Ирана обуславливалось невозможностью доставки в них электричества из городов. Теперь собственную энергию они продают Министерству энергетики ИРИ. Планируется выработать законодательные нормы, согласно которым закупки электроэнергии в деревнях станут постоянными.

К 2030 году Иран рассчитывает производить 7500 МВт «зеленой» энергии, сегодня этот показатель всего 350 МВт. Однако у страны есть хорошие перспективы для развития солнечной энергетики, потому что на 2/3 территории солнце светит 300 дней в году.

Британские ученые изобрели стеклянные кирпичи с солнечными батареям

Группа ученых Эксетерского университета в Англии разработала стеновые блоки из стекла со встроенными солнечными батареями. Об этом пишет архитектурный портал Archdaily. Блоки можно использовать при строительстве домов вместо обычных кирпичей.

Стройматериал назвали «Solar Squared» («Солнечная квадратная плитка»). Как показали тесты в лаборатории университета, помимо генерации электроэнергии блоки обладают и рядом других полезных свойств. В частности, построенные таким образом стены хорошо пропускают в здание солнечный свет и сохраняют тепло в помещениях.

Для продвижения продукта ученые создали инновационную компанию The Build Solar. В настоящее время ведется поиск инвесторов. Вывод «солнечной плитки» на рынок предварительно запланирован на 2018 год.

В Дубае запустили крупнейшую в мире солнечной электростанции

Установка каждой гелиопанели обошлась в 6 тыс. евро, включая аренду на год, ремонт и техническое оборудование. Планируется, что солнечные батареи будут работать на остановках общественного транспорта около года, после чего будут переданы школам и детсадам.

По словам Петра Свитальского, главы делегации ЕС в Армении, Евросоюз заинтересован в развитии альтернативной энергетики в стране. Остановку с гелиопанелями он назвал «солнечной остановкой Евросоюза ».

Несмотря на падение цен на нефть, газ и уголь, которое сделало ископаемое топливо более конкурентоспособным, инвесторы не снизили свою активность в сфере возобновляемой энергетики, поскольку вложения в развитие альтернативных источников энергии и их совокупные мощности продолжают повсеместно демонстрировать рост. Армения также намерена делать акцент на возобновляемые источники энергии, планируя в ближайшие несколько лет значительно увеличить их долю в общем энергобалансе страны. Все проекты в этой сфере рассчитаны на частных инвесторов, но при этом государство прилагает максимум усилий для того, чтобы создать комфортные условия для бизнеса.

ТАКОВ ВКРАТЦЕ БЫЛ ГЛАВНЫЙ МЕССИДЖ, КОТОРЫЙ ВЛАСТИ АРМЕНИИ на уровне главы государства Сержа Саргсяна и ответственных за развитие сферы должностных лиц из Министерства энергетических инфраструктур и природных ресурсов передали потенциальным инвесторам, собравшимся 25 января на форуме по возобновляемой энергетике, проводившемся в рамках Недели энергетики-2017. Организатором мероприятия выступил Фонд возобновляемой энергетики и энергосбережения Армении в сотрудничестве с Центром выставочных проектов "Экспомедиа".

Если говорить языком цифр, то доля альтернативной энергетики в общем энергобалансе с учетом увеличения объемов потребления должна составить как минимум 30% к 2036 году. Правда, и сейчас Армения находится в пределах этой цифры, а растущее потребление при вводе новых мощностей сохранит это соотношение. Так, к 2025 году в Армении планируется построить ветряные электростанции суммарной мощностью до 200 МВт. В сфере солнечной энергетики к тому времени тоже будут запущены проекты по строительству станций с использованием фотовольтаических технологий общей мощностью до 70 МВт, из которых 40 МВт появятся уже к 2020 году. Отражено в общем энергобалансе также и строительство Лори-Бердской и Шнохской ГЭС средней мощности, которые будут производить около 500 млн кВт/ч электроэнергии, плюс электроэнергия Мегринской ГЭС, которую предусматривается запустить в 2033 году.

Для улучшения инвестпривлекательности сферы пару лет назад у нас были приняты законодательные изменения, согласно которым вместо 15 лет обязательной покупки электроэнергии со стороны рынка установлено 20 лет для сфер солнечной, ветряной и геотермальной энергетики. Однако по геотермальной энергетике в долгосрочной программе развития энергосистемы Армении пока заложен консервативный прогноз, рассчитанный в пределах всего 25 МВт по этому виду возобновляемого источника. О больших мощностях можно будет говорить, если окончательно подтвердится ожидаемый энергетический потенциал геотермальных источников в районе Каркар Сюникской области, близ Сисиана, где на высоте 3100 метров от уровня моря ведутся на сегодня буровые работы для оценки потенциала геотермальных ресурсов в этой местности.

Отправная точка - Масрик

Впрочем, ключевой тематикой нынешнего инвестиционного форума стало развитие именно солнечной энергетики, потенциал которой, с учетом природно-климатических условий Армении, довольно высок.

РАЗВИТИЕ СОЛНЕЧНОЙ ЭНЕРГЕТИКИ ЯВЛЯЕТСЯ ОДНИМ ИЗ ПРИОРИТЕТОВ развития энергетической сферы Армении, и мы уверены, что, учитывая снижение цен на мировом рынке, сможем получить конкурентоспособные и низкие тарифы для армянского рынка, - обратился к участникам форума заместитель министра энергетических инфраструктур и природных ресурсов Айк Арутюнян.

Вопрос в том, что, несмотря на существенное удешевление технологий в этой области, строительство солнечных станций, в частности, фотовольтаических, требует немалых капитальных затрат. Поэтому правительство для уменьшения воздействия на конечный тариф для потребителей в сфере солнечной энергетики намерено привлечь дешевые кредитные ресурсы от международных финансовых институтов, а далее предоставить эти средства на тендерных условиях заинтересованным инвесторам.

А заинтересованных инвесторов, судя по их числу на форуме, было немало, причем около десятка иностранных компаний уже выразили свою готовность участвовать в тендере на строительство солнечной фотовольтаической станции мощностью в 55 МВт в районе Масрик Гегаркуникской области. Соответствующий инвестиционный пакет вновь был представлен во время отдельного заседания, на котором собрались несколько десятков представителей компаний из Франции, Германии, Испании, Италии, Голландии, Швейцарии, США, Китая, России, ОАЭ, Ирана и др. стран.

При этом было особо отмечено, что правительство Армении, предоставив лицензию на строительство солнечных станций, заключит также договор с инвестором о том, что в течение 20 лет обязуется закупать электроэнергию, которую он производит, с гарантией сохранения минимального тарифа. Но и это не все. Инвестор может рассчитывать также на получение долгосрочного и льготного финансирования и гарантий от Всемирного банка.

Не так, как с ГЭС

Новая инвестиционная программа действительно довольно привлекательная как с точки зрения потенциальных инвесторов, так и в контексте ее воздействия на развитие солнечной энергетики в Армении. В целом же, говоря о развитии этого направления, эксперты призывают с особой тщательностью подходить к реализации программ по строительству солнечных станций, контролируя при этом выполнение всех норм – и социальных, и экологических.

БУДУЩЕЕ АЛЬТЕРНАТИВНОЙ ЭНЕРГЕТИКИ АРМЕНИИ, БЕССПОРНО, за солнцем, и я лично являюсь активным сторонником развития солнечных технологий у нас в стране. Но при всей актуальности и привлекательности этого направления нам обязательно надо учитывать все те вызовы, которые могут возникнуть при строительстве солнечных станций, - отметил в беседе с нами Эдвард Арзуманян, бывший в середине 90-х годов заместителем министра энергетики Армении. – Дело в том, что для развития солнечной энергетики (по крайней мере при нынешних технологиях) необходимы довольно большие земельные участки. Армения же, имея огромный потенциал в этой области, должна крайне осторожно отнестись к выбору территорий для размещения станций с тем, чтобы не навредить местностям, имеющим сельскохозяйственное значение. Всего лишь несколько лет назад с таким же энтузиазмом говорилось о развитии малых ГЭС в стране. Но, увы, как показало время, многие из них были построены и впоследствии эксплуатировались с нарушением всех предусмотренных норм, что вызвало волну возмущения как среди местного населения, так и экологов. Так вот при строительстве солнечных станций ни в коем случае нельзя допустить повторения тех ошибок, которые были совершены в Армении за последние годы при массовом строительстве малых ГЭС.

Еще десять лет назад возобновляемая энергетика считалась нерентабельным бизнесом. В него вкладывались либо энтузиасты, либо жертвы «зеленого лобби». Но 2017 год показал, что до того дня, когда «чистая» энергетика сможет на равных конкурировать с традиционными электростанциями, осталось совсем недолго.

Побиты все рекорды

Год начался с рекорда, который установила Дания. В январе ветровая турбина в городе Остерлид за сутки произвела почти 216 000 кВт*ч электроэнергии - этого достаточно, чтобы обеспечить электричеством стандартный дом на 20 лет вперед.

Китайская провинция Цинхай с населением 5,6 млн человек этим летом смогла целую неделю прожить исключительно на «зеленой» энергии. Эксперимент продолжался с 17 по 23 июня, и за это время жители региона потребили 1,1 млрд кВт*ч чистой электроэнергии - это эквивалентно сжиганию 535 тысяч тонн угля. Мощные гидроресурсы обеспечили провинции 72,3% потребности в электричестве, а остальное дала солнечная и ветряная генерация.

Следующий мировой рекорд пришелся на выработку приливной энергии. Его установила шотландская компания Atlantis Resources Limited, которая при помощи всего двух гидротурбин смогла обеспечить электричеством 2 000 шотландских домов. Через месяц в Шотландии впервые получили водород из приливной энергии, который планируют использовать в качестве альтернативного горючего для паромов. А в октябре Шотландия совершила инженерный подвиг, запустив первую плавучую ветровую ферму в 24 километрах от берега. Ее турбины 253 метра в высоту, причем, над уровнем моря они возвышаются всего на 78 метров, а ко дну крепятся цепями весом 1200 тонн.

Самую высокую в мире ветровую турбину в этом году построили в Германии. Одна только ее опора высотой 178 м, а общая высота башни с учетом лопастей превышает 246,5 м. Проект обошелся в €70 млн, но он окупится примерно через 10 лет: ожидается, что каждый год ветряк будет приносить по €6,5 млн.

Рекорд для всей Европы этой осенью обеспечили ураганы, которые позволили региону получить четверть электроэнергии от ветровых установок. В один из самых ветреных дней ветрогенераторы 28 стран ЕС за сутки произвели 24,6% от общего энергопотребления - этого хватило бы на обеспечение 197 млн домохозяйств.

Но мировым лидером по части использования возобновляемых источников можно назвать Коста-Рику. Страна целых 300 дней в 2017 году обходилась исключительно энергией ветра, воды, солнца и других возобновляемых источников, побив свой же рекорд 2015 года - 299 дней на возобновляемой энергии. Самый весомый вклад внесла гидроэнергетика, которая составляет 78% от энергобаланса страны. За ней идут 10% энергии ветра, 10% геотермальной энергии, и по 1% приходится на биотопливо и солнечную энергетику.

Обвал цен на возобновляемые источники

В 2017 году идея полного перехода на возобновляемые источники энергии перестала казаться утопией. Мировое падение цен на солнечную энергетику началось прошлым летом, когда Саудовская Аравия стала продавать ее по 2,42¢/кВтч. Но когда тариф снизился до 1,79¢/кВтч, все решили, что такое возможно лишь благодаря их климатическим условиям, нефтедолларам и тотальному контролю со стороны государства.

Однако, в ноябре 2017 года Центр национального контроля электроэнергии Мексики сообщил, что получил рекордное предложение по ценам на солнечную энергию - 1,77¢/кВтч от ENEL Green Power. Такая цена позволила компании выиграть тендер на строительство четырех крупнейших проектов общей мощностью 682 МВт.

Эксперты считают, что уже в 2019 году солнечная энергия будет стоить 1 ¢/кВтч.

Цены на солнечную энергию в Чили пока выше, чем в Мексике и Саудовской Аравии - 2,148¢/кВтч. Однако для страны, которая еще пять лет назад была импортером энергоносителей и страдала от спекуляций и завышенных тарифов, это колоссальный результат. Солнечные фермы страны даже при ныне существующих технологиях производят в два раза более дешевое электричество, чем угольные электростанции. А электростанция El Romero превратила Чили в одного из крупнейших экспортеров солнечной энергии.

Дальнейшее падение цен будет вызвано увеличением эффективности солнечных панелей. Недавно JinkoSolar в очередной раз побил собственный рекорд, добившись в лабораторных условиях эффективности поликристаллических батарей в 23,45%. По сравнению со стандартной эффективностью в 16,5% это улучшение на 42%. Понятно, что скоро это напрямую отразится на тарифах.

Энергия морского ветра тоже сильно упала в цене и стала дешевле атомной. Две британские компании предложили на аукционе построить станции морского ветра, которые будут с 2022-2023 годов вырабатывать электроэнергию по цене £57,50 за МВт*ч. Это в два раза меньше, чем цены на аналогичные станции в 2015 году и меньше, чем предлагает новая АЭС Хинлки-Пойнт С - £92,50 за МВт*ч.

А немецкие производители энергии в октябре и вовсе доплачивали своим потребителям за использование электричества. Ветровым, солнечным и традиционным электростанциям удалось выработать так много энергии, что на протяжении нескольких дней стоимость одного мегаватта опускалась ниже нуля, а максимальное падение составило - €100. Отрицательные цены на электричество установились и в канун Рождества, благодаря теплой погоде и мощному ветру. Спрос на электроэнергию был настолько низким, что энергокомпании доплачивали крупным потребителям до €50 за потребление каждого МВт*ч.

Солнечная энергетика как главный тренд

За обвал цен на возобновляемую энергию можно благодарить страны Ближнего Востока, которые сконцентрировалась на ее производстве, что привело к развитию конкуренции и существенному снижению тарифов. В 2017 году было объявлено, что Солнечный парк имени Мохаммеда ибн Рашида Аль Мактума (самая крупная в мире сеть солнечных электростанций, локализованных в едином пространстве в Дубаи), увеличивает мощности еще на 700 МВт. В новой конфигурации парк займет 214 кв.км, а в центре объекта расположится самая высокая в мире 260-метровая солнечная башня. Добавочные конструкции дадут парку возможность генерировать 5000 МВт энергии к 2030 году, когда все работы по их установке будут завершены.

Более скромные, но все же рекорды в области солнечной энергетики поставила в этом году Австралия. На конец ноября страна уже построила солнечные станции совокупной мощностью 1 ГВт, а к концу года эта цифра достигла 1,05 - 1,10 ГВт. Другой рекордный показатель этого года - объем коммерческих солнечных крыш. Было установлено 285 МВт в категории от 10 до 100 кВт, побив предыдущий рекорд - 228 МВт в 2016. В начале осени 2017 года именно солнечные батареи обеспечили 47,8% мощности всей генерации электроэнергии в штате Южная Австралия. Австралийский оператор энергетического рынка предполагает, что к 2019 году рекорд минимальной потребляемой мощности может достигнуть 354 МВт, а через 10 лет солнечные батареи полностью заменят электростанции.

Поскольку в Юго-Восточной Азии давно ощущается нехватка земель для размещения солнечных электростанций, выходом из ситуации могут стать плавучие фермы. Было объявлено, что на поверхности водохранилища Cirata в индонезийской провинции Западная Ява расположится солнечная электростанция мощностью 200 МВт. Ферма будет состоять из 700 000 плавучих модулей, которые будут крепиться ко дну водоема и соединяться электрическими кабелями с береговой высоковольтной подстанцией. Если проект окажется успешным, 60 подобных ферм появятся во всей Индонезии.

Настоящим спасением солнечная энергетика станет для Индии. Около 300 млн из 1,3 млрд индийцев все еще живут без электричества, поэтому премьер-министр Индии Нарендра Моди запустил программу стоимостью €1,8 млрд, которая позволит электрифицировать все домохозяйства страны к концу декабря 2018 года. Она охватит примерно четверть населения страны, а это более 40 млн семей в сельской и городской Индии. В дома без электричества за счет государства поставят солнечные батареи мощностью 200-300 Вт в комплекте с аккумулятором, пятью светодиодами, вентилятором и штепсельной вилкой. Их будут бесплатно ремонтировать и обслуживание в течение пяти лет.

В целом, к концу 2017 года общая мощность солнечных установок в мире достигла 100 ГВт. Огромную роль в этом сыграл Китай, который занял лидирующие позиции в строительстве солнечных электростанций - их суммарная мощность в стране достигла 52 ГВт. Дальше с огромным отрывом идут США (12,5 ГВт), Индия (9 ГВт), Япония (5,8 ГВт), Германия (2,2 ГВт) и Бразилия (1,3 ГВт). Чуть более скромный вклад внесли Австралия, Чили, Турция и Южная Корея.

Все деньги - на ветер и солнце

Пожалуй, 2017 год отличился еще и объемом инвестиций в возобновляемые источники энергии. Многие нефтяные гиганты, от Royal Dutch Shell до Total и ExxonMobil, начали вкладывать деньги в энергетические стартапы. Они полагают, что в энергетической отрасли небольшие компании могут представлять угрозу крупным игрокам, поэтому нужно всегда оставаться в курсе трендов.

Так, BP заплатила $200 млн, чтобы получить 43% акций крупнейшей в Европе компании-производителя солнечных панелей Lightsource. Фирму переименуют в Lightsource ВР, и представители ВР получат два места в правлении. Компания наймет 8000 человек на работу в сфере возобновляемой энергетики, в том числе на ветровых электростанциях в США и на производстве биотоплива в Бразилии.

Два американских финансовых гиганта - JPMorgan и Citigroup - этой осенью объявили, что к 2020 году полностью перейдут на чистую энергетику. А JPMorgan пообещал вложить в возобновляемую энергетику $200 миллиардов к 2025 году. Об официальном стопроцентном переходе на ВИЭ сообщил и Google: офисы компании по всему миру будут потреблять 3 ГВт возобновляемой энергии. Общие инвестиции Google в сферу возобновляемой энергетики достигли $3,5 млрд, 2/3 из которых приходится на объекты в США.

Всемирный банк объявил о том, что вложит $325 млн в фонд Green Cornerstone, чтобы создать крупнейший в мире фонд «зеленых облигаций» для развивающихся рынков. При этом с 2019 года все инвестиции World Bank Group в нефтегазовую отрасль будут прекращены. Ранее об этом же объявил и Нефтяной фонд Норвегии - крупнейший в мире суверенный фонд с активами в $1 трлн. Кроме того, в этом году Imperial Oil, ConocoPhillips и ExxonMobil списали со своего баланса миллиарды баррелей разрабатываемых нефтяных запасов в канадской Альберте, поскольку стало невыгодно тратить ресурсы на трудноизвлекаемую нефть при ее низкой стоимости. Shell продала свою долю активов в битуминозных песках за $7,25 млрд. При этом их инвестиции в чистую энергетику растут по экспоненте.

Перепрофилирование

Переход на возобновляемые источники энергии лишит работы сотни тысяч сотрудников нефтегазовой отрасли. Однако, канадские нефтяники увидели в этом для себя новые возможности. Они создали компанию Iron and Earth, которая поможет всем сотрудникам нефтегазовой индустрии получить навыки работы с солнечными панелями и стать востребованными специалистами, когда добыча ископаемого топлива сойдет на нет. За 2018 год Iron and Earth планирует переквалифицировать не менее 1000 сотрудников нефтегазовой отрасли, а впоследствии открыть филиалы по всей Канаде и организовать обучение для специалистов в США. Причем, не только для нефтяников, но для всех, чьи навыки вскоре могут оказаться невостребованными: шахтеров, крановщиков, металлургов и других.

Германия решила проблему безработицы в связи с отказом от угольной промышленности еще более эффективным способом. Крупнейшую угольную шахту глубиной 600 метров в городе Боттроп превратят в гидроаккумулирующую электростанцию на 200 МВт. Этой мощности хватит на 400 000 домов. Она будет работать по принципу аккумулятора и накапливать излишки энергии от солнечных панелей и ветряных мельниц. Местные рабочие, которые были полностью заняты на шахте, получат альтернативный источник заработка. А энергосистема будет защищена от дисбаланса в моменты, когда солнце не светит и ветер не дует.

По такому же принципу работает и государственная энергетическая компания Китая Three Gorges New Energy Co. В этом году она частично запустила плавучую солнечную ферму на 150 МВт на затопленном угольном карьере в округе Хуайнань. Сооружение стоимостью $151 млн начали строить в июле, а окончательное завершение работ планируется в мае 2018. Работая на полную мощность, она сможет обеспечить электричеством 94 000 домов и станет самой крупной в КНР.

Очевидно, что интерес к возобновляемым источникам энергии будет и дальше расти. Точкой невозврата станет 2050 год - именно к этому сроку большинство стран полностью перейдет на чистую энергетику. И в 2018 году будут сделаны серьезные шаги в этом направлении.

Первыми под удар попадут угольные электростанции Европы. На сегодняшний день 54% из них не приносят прибыли, и существуют только ради обеспечения пиковой нагрузки. В 2018 году Финляндия запретит использование угля для выработки электроэнергии и повысит налог на выбросы углекислого газа. К 2030 году страна планирует полностью отказаться от этого топлива.

Индийская угледобывающая компания Coal India тоже планирует закрыть 37 угольных шахт в марте 2018 года - их разработка стала экономически невыгодной из-за развития возобновляемой энергетики. Компания сэкономит на этом около $124 млн, после чего переключится на солнечную энергетику и установит в Индии не менее 1 ГВт новых солнечных мощностей.

Ожидается, что спрос на солнечную энергию в Европе всего за один 2018 год вырастет на 35%. Основной запрос на солнечные панели будут формировать Испания и Нидерланды, которые собираются реализовать крупнейшие проекты в течение следующих двух лет. Ожидается, что они достигнут 1,4 ГВт и 1 ГВт соответственно.

А Германия и Франция уже в этом году перешагнули отметку в гигаватт каждая. Что касается Латинской Америки, спрос на солнечную энергию в этом регионе удвоится в 2018 году, а Бразилия и Мексика, как ожидается, перешагнут «гигаваттный рубеж». Достигнут гигаватта установленных мощностей также Египет, Южная Корея и Австралия.

Даже специалисты поражены, сколь фантастическими темпами в мире растет солнечная энергетика. Хотя сегодня ее доля в мировом энергобалансе менее одного процента, однако эксперты дают прогноз: к 2050 году она составит не менее 27 процентов и обойдет все остальные виды топлива.

В мае этого года в Оренбургской области введена в строй Соль-Илецкая СЭС мощностью 25 МВт. Фото: Пресс-служба ГК "Хевел"

Каковы предпосылки для столь оптимистического прогноза? Прежде всего вкладываемые суммы - около 100 миллиардов долларов в год. И темпы ввода новых мощностей. Только в 2016 году в мире введено солнечных электростанций (СЭС) общей мощностью 70 - 75 ГВт. То есть за год мощность солнечной энергетики выросла сразу на треть, достигнув примерно 300 ГВт.

Если еще недавно мировым лидером была Европа, то сейчас пальму первенства перехватил Китай. Всего за год мощность электростанций здесь увеличилась почти в два раза, достигнув 78 ГВт. А планы наполеоновские: мощность солнечных электростанций планируется к 2020 году увеличить на 110 ГВт. На эти цели страна намерена потратить сотни миллиардов долларов.

Как ни странно, солнечная энергетика практически не заметила падения цен на нефть. А ведь ставка на альтернативные источники в мире была сделана именно тогда, когда цена углеводородного топлива зашкаливала.

Общая стратегия развития альтернативной энергетики вряд ли изменится, - сообщил "РГ" председатель Научного совета РАН по нетрадиционным возобновляемым источникам энергии, замдиректора Объединенного Института высоких температур РАН Олег Попель. - Все понимают, что экономика развивается циклами, вслед за спадом обязательно последует подъем. А значит, все вернется на круги своя, в том числе и цена нефти. Словом, делать ставку на альтернативную энергетику, в том числе и на Солнце, все равно придется.

У такого бума солнечной энергии несколько причин, в частности, стремление стран уйти от импорта углеводородов, а также решить экологические проблемы, связанные с выбросами углекислого газа. Но главный стимул - цена солнечного киловатта. Всего за несколько лет во многих странах она вплотную приблизилась к цене электроэнергии, получаемой на угольных и газовых станциях.

В России более трех четвертей территории не имеют централизованного энергоснабжения

А что же Россия? Может быть, Солнце - это не наш вариант? Ведь мы страна с холодным климатом. Но вот данные Института энергетической стратегии. Потенциал солнечной энергии, поступающей на территорию России всего за три дня, превышает энергию всего годового производства электроэнергии в стране. Количество солнечной радиации варьируется от 810 кВт/час на квадратный метр в год в отдаленных северных районах до 1400 кВт/час на юге.

Вообще представление, будто бы Россия является малосолнечной страной, в корне неверно, - говорит Олег Попель. - Во многих регионах, в том числе в Забайкалье и Якутии, использовать солнечную энергию выгодней, чем в Краснодарском крае, Крыму. Здесь больше солнечных дней и солнечной радиации, чем в южных районах.

Итак, солнце у нас есть, но как оно работает? Если не считать СЭС в Крыму, то сегодня в России действует 10 станций общей мощностью около 100 МВт, или 0,04 процента от всей установленной мощности энергосистемы России. Что касается Крыма, то там сегодня действует пять станций общей мощностью 300 МВт, но они не подключены к единой энергосистеме страны и работают только на полуостров.

В целом масштабы российской солнечной энергетики - это, конечно, мизер по сравнению с Китаем - почти в 200 раз меньше. Увы, сорвана принятая в 2009 году программа, по которой доля альтернативной энергетики к 2020 году должна была составить 4,5 процента от общей выработки. Теперь этот показатель перенесен на 2024 год.

Но стоит ли России гнаться за лидерами? Эксперты уверены, что это не наш путь. России нет смысла вкладывать в эту сферу огромные деньги. Сегодня правительством выбраны три основные направления развития солнечной энергетики. Первое связано с созданием солнечных электростанций, которые подключены к централизованным энергосетям. Принципиально важно, что теперь они могут сбрасывать в них излишки вырабатываемой энергии. По словам Олега Попеля, как только в 2013 - 2014 годах появились документы, которые обязывают монополистов подключать к сети "малых" производителей энергии и позволяют им зарабатывать на генерации, в нашей солнечной энергетике начался бум. В эту сферу пришел частный инвестор.

Инфографика: "РГ"/Александр Смирнов/Ирина Фурсова

Сегодня между государством и инвестором заключается так называемой договор о поставке мощностей (ДПМ), по которому государство гарантирует возврат инвестиций в размере, позволяющем инвестору окупить вложения максимум за 15 лет, - говорит Попель. - За границей действует другая система, там жесткие тарифы, по которым сеть покупает у частника солнечную энергию. У нас принят другой вариант.

Судя по всему, он пришелся по вкусу российскому бизнесу. Во всяком случае на сегодня все установленные государством лимиты на вводы мощностей СЭС выбраны разными компаниями. Они взяли на себя обязательства по пуску станций, даже рискуя получать штрафы за срывы сроков. Им предстоит к 2024 году построить 57 СЭС мощностью от 5 до 70 МВт и общей мощностью 1,5 ГВт.

Кто-то скажет, что если это и бум, то по сравнению с лидерами очень скромный. Верно. Но у нас в стране избыток мощностей около 25 процентов. Поэтому было бы странным сейчас масштабно вводить новые. По мнению экспертов, стратегия в области солнечной энергетики должна сводиться к накоплению опыта по строительству и эксплуатации таких станций. В общем, нам надо развивать свои технологии, чтобы поддерживать компетенции в этой области.

В Китае с помощью солнечной энергии в первую очередь пытаются решить экологические проблемы

Иная картина с отдаленными регионами. В России более 75 процентов территорий не имеют централизованного энергоснабжения, сюда не доходят ЛЭП, поэтому топливо приходится завозить, что влетает в копеечку. К примеру, в Якутии стоимость электроэнергии от дизель-генераторов обходится в 25, а кое-где в 60 рублей за киловатт-час. И вот здесь для солнечных установок широкое поле деятельности.

Недавно для удаленных регионов, где нет централизованного энергоснабжения, принят национальный проект по созданию автономных солнечно-дизельных установок мощностью 100 кВт. По словам Олега Попеля, им уже заинтересовались многие регионы, так как внедрение подобных систем позволит экономить значительные средства. Уже разрабатываются региональные программы развития энергетики, и практически во всех предусмотрены возобновляемые источники, в том числе и солнечные.

И хотя в этом случае государство не оказывает бизнесу поддержки, у национального проекта нашлись инвесторы, которые видят здесь интерес. До 2021 года в разных регионах должны быть введены 100 автономных установок мощностью по 100 кВт, две уже построены на Алтае.

И, наконец, третье направление развития солнечной энергетики в России - это микроустановки мощностью до 15 кВт. Предлагается разрешить частным собственникам покупать такие системы, вырабатывать электроэнергию для своих нужд, а излишки продавать в сети. Решение о поддержке этого проекта пока не принято, сейчас разрабатывается его нормативная база.

Чтобы реализовывать все эти направления, в Новочебоксарске построен завод, который выпускает по новой технологии фотоэлектрические модули, не уступающие лучшим мировым образцам. Их КПД около 20 процентов, что вдвое лучше, чем у распространенных сегодня моделей. По мнению руководителей предприятия, такой уровень продукции позволит не только обеспечить потребности России, но и выходить на мировой рынок солнечных установок.

Вся правда о солнечных панелях

Пришло время рассказать о том, насколько эффективна солнечная энергетика в Московской области. Целый год я собирал статистику выработки солнечной энергии с двух 100-ваттных солнечных панелей, установленных на крыше загородного дома и подключенных в сеть с использованием грид инвертора. Я уже писал об этом год назад. А сейчас пора подвести итоги.

Сейчас вы узнаете то, о чем никогда не расскажут продавцы солнечных панелей.

Ровно год назад, в октябре 2015 года, в качестве эксперимента я решил записаться в ряды «зеленых», спасающих нашу планету от преждевременной гибели, и приобрел солнечные панели максимальной мощностью 200 ватт и грид-инвертор рассчитанный максимум на 300 (500) ватт вырабатываемой мощности. На фотографии вы можете увидеть структуру поликристаллической 200-ваттной панели, но через пару дней после покупки стало ясно, что в одиночной конфигурации у неё слишком низкое напряжение (у нее всего 60 ячеек, вместо рекомендуемых 72), недостаточное для правильной работы моего грид-инвертора.

Поэтому мне пришлось её поменять на две 100-ваттных монокристаллических панели. Теоретически они должны быть немного эффективнее, по факту же они просто дороже . Это панели высокого качества, российского бренда Sunways. За две панели я заплатил 14 800 рублей.

Дополнение для тех, кто в танке и не читает текст: на фото поликристаллическая солнечная панель, о которой я написал выше, просто она очень красиво выглядит при съемке крупным планом, поэтому я и поставил сюда её фотографию.

Вторая статья расходов – грид-инвертор китайского производства. Производитель никак себя не обозначил, но устройство сделано качественно, а вскрытие показало, что внутренние компоненты рассчитаны на мощность до 500 ватт (вместо 300, написанных на корпусе). Этот грид также поддерживает режим MPPT, позволяющий получить максимум от солнечных панелей при любой освещенности. Стоит такой грид всего 5 000 рублей. Грид – это гениальное устройство. С одной стороны к нему подключается + и – от солнечных панелей, а с другой стороны он с помощью обычной электрической вилки подключается совершенно в любую электрическую розетку в вашем доме. В процессе работы грид подстраивается под частоту в сети и начинает "выкачивать" переменный ток (сконвертированный из постоянного) в вашу домашную сеть 220 вольт.

Грид работает только при наличии напряжения в сети и его нельзя рассматривать как резервный источник питания . Это его единственный минус. А колоссальным плюсом грид инвертора является то, что вам в принципе не нужны аккумуляторы . Ведь именно аккумуляторы являются самым слабым звеном в альтернативной энергетике. Если та же солнечная панель гарантированно отработает более 25 лет (то есть через 25 лет она потеряет примерно 20% своей производительности), то срок службы обыкновенного свинцового аккумулятора в аналогичных условиях составит 3-4 года . Гелевые и AGM аккумуляторы прослужат дольше, до 10 лет, но они и стоят в 5 раз дороже обычных аккумуляторов.

Поскольку у меня есть сетевое электричество, то мне никакие аккумуляторы не нужны. Если же делать систему автономной, то нужно добавить к бюджету еще 15-20 тысяч рублей на аккумулятор и контроллер к нему.

Теперь, что касается выработки электроэнергии. Вся энергия вырабатываемая солнечными панелями в реальном времени попадает в сеть. Если в доме есть потребители этой энергии, то она вся будет израсходована, а счетчик на вводе в дом «крутиться» не будет. Если же моментальная выработка электроэнергии превысит потребляемую в данный момент, то вся энергия будет передана обратно в сеть. То есть счетчик будет «крутиться» в обратную сторону. Но тут есть нюансы .

Во-первых, многие современные электронные счетчики считают проходящий через них ток без учета его направления (то есть вы будете платить за отдаваемую обратно в сеть электроэнергию). А во-вторых, российское законодательство не разрешает частным лицам продавать электроэнергию. Такое разрешено в Европе и именно поэтому там каждый второй дом обвешан солнечными панелями, что в совокупности с высокими сетевыми тарифами позволяет действительно экономить.

Но за последний год произошли изменения как в сетевых тарифах, так и в используемом оборудовании. Я заменил инвертор и выработка увеличилась...

...но чуда, к сожалению, не произошло.

Напомню, что в моей системе полностью отсутствуют накопители в виде аккумуляторов, т.к. во-первых они совершенно не нужны (вся вырабатываемая солнечными панелями энергия гарантированно потребляется), а во-вторых они лишь увеличат стоимость оборудования и потребуют регулярной замены каждые несколько лет (в текущей конфигурации система не требует обслуживания в течение всего срока службы).

Изначально для системы я купил грид мощностью 300 ватт, который был установлен в доме. У него было два недостатка – во-первых, это шум вентилятора, который периодически включался для охлаждения внутренних компонентов, а во-вторых, потери на проводах от солнечных панелей до инвертора. Но в процессе эксплуатации выявился ещё один недостаток. Оказалось, что купленный грид был расчитан на мощность панелей 500 ватт и это тот самый случай, когда инвертор не должен иметь запас по мощности. Мои панели общей мощностью 200 ватт не могли его нагрузить полностью и в результате он имел низкий КПД в облачную погоду и генерация часто срывалась.

Я решил заменить грид на другой. Для этих целей я приобрёл микро инвертор в герметичном корпусе, устанавливаемый в непосредственной близости к солнечным панелям с максимальной мощностью 230 ватт. А от него в сеть дома протянут провод с напряжением 220 вольт. Уже первое включение показало, что этот грид способен выдавать энергию (пусть и немного) даже в облачную погоду.

Солнечные панели установлены на стационарной раме на крыше и направлены строго на юг. Примерно 4 раза в год я меняю их угол наклона. Почти горизонтально летом, под углом 45 градусов в межсезонье и максимально близко к вертикали зимой. Но всё равно зимой их засыпает снегом. Периодически их нужно протирать от пыли и грязи. Поворотный механизм (трекер) не использую т.к. его стоимость не отобъётся никогда .

Начался сентябрь: мало солнца, много облаков – выработка очень сильно упала. В дождливые дни она просто ничтожна (менее 50 ватт часов в сутки).

Вот график выработки электроэнергии за последние 6 месяцев. Новый грид был установлен в середине мая. Кстати, если днём отключают электричество в СНТ, то и выработка тоже прекращается (такое было несколько раз этим летом).

А вот статистика помесячной выработки за этот год. Самое кардинальное изменение не в том, что выработка увеличилась, а в том, что у нас в СНТ снизились тарифы – теперь СНТ приравниваются к сельским поселениям и электроэнергия стала стоить на 30% дешевле. В то время, как замена инвертора повысила эффективность примерно на 15%.

Напомню, что у солнечной энергетики в Московской области есть две проблемы:

1. Низкие тарифы на сетевое электричество.

2. Малое количество солнечных дней.

Выработка энергии за лето 2017 года по месяцам (в скобках выработка за прошлый год):

Май – 20,98 (19,74) квтч

Июнь – 18,72 (19,4) квтч

Июль – 22,72 (17,1) квтч

Август – 22,76 (17,53) квтч

На текущий момент общая выработка за 2017 год составила 105 квтч. По текущим тарифам (4,06 руб/квтч) это всего 422 рубля. Основной пик выработки закончился, впереди облачная осень и зима. Давайте будем считать, что выработка за этот год составит 500 рублей. А в оборудование я вложил 20 000 рублей (грид удалось заменить без доплат).

При этом напомню, что в прошлом году выработка составила 650 рублей (из-за того, что стоимость электроэнергиии составляла 5,53 рубля/квтч). То есть несмотря на увеличение КПД солнечной системы, срок её окупаемости увеличился с 32 до 40 лет!

Даже если пофантазировать и представить, что в Московской области целый год не будет облаков, то за год с панелями на 200 ватт можно получить всего 240 квтч (теоретический максимум при максимальном КПД солнечных панелей, производимых в настоящее время). Или около 1000 рублей. То есть всё равно срок окупаемости составит 20 лет. И это только в теории, поскольку в реальной жизни такого быть не может. И это тарифы Московской области, в то время как в некоторых регионах России электроэнергия стоит менее 2 рублей за квтч. А если добавить в систему аккумуляторы, то эта система не окупится никогда.

Поэтому солнечные панели рентабельны только там, где нет сетевого электричества, а его подключение либо невозможно в принципе, либо стоит очень дорого.

А для того, чтобы сэкономить на содержании загородного дома есть множество других, более эффективных решений: соблюдение технологии строительства, использование современных материалов (газобетон, экструзионный пенополистирол), утепление без мостиков холода, использование теплового насоса (кондиционера), использование ночного тарифа.

В текущей конфигурации мой энергоэффективный дом совершенно не требует кондиционирования летом, в нём круглогодично поддерживается комфортная температура (даже если в нём никого нет), а годовой расход энергии составляет около 7000 квтч. Это в 3 раза дешевле, чем содержание квартиры аналогичной площади в Москве.

Более подробно со всеми материалами, посвящёнными строительству современного энергоэффективного дома своими руками, можно ознакомиться

Новое на сайте

>

Самое популярное