Домой Виды займов Как решать формулы с суммой. Как найти сумму ряда

Как решать формулы с суммой. Как найти сумму ряда

Для того, чтобы вычислить сумму ряда , нужно просто сложить элементы ряда, заданное количество раз. Например:

В приведённом выше примере это удалось сделать очень просто, поскольку суммировать пришлось конечное число раз. Но что делать, если верхний предел суммирования бесконечность? Например, если нам нужно найти сумму вот такого ряда:

По аналогии с предыдущим примером, мы можем расписать эту сумму вот так:

Но что делать дальше?! На этом этапе необходимо ввести понятие частичной суммы ряда . Итак, частичной суммой ряда (обозначается S n ) называется сумма первых n слагаемых ряда. Т.е. в нашем случае:

Тогда сумму исходного ряда можно вычислить как предел частичной суммы:

Таким образом, для вычисления суммы ряда , необходимо каким-либо способом найти выражение для частичной суммы ряда (S n ). В нашем конкретном случае ряд представляет собой убывающую геометрическую прогрессию со знаменателем 1/3. Как известно сумма первых n элементов геометрической прогрессии вычисляется по формуле:

здесь b 1 - первый элемент геометрической прогрессии (в нашем случае это 1) и q - это знаменатель прогрессии (в нашем случае 1/3). Следовательно частичная сумма S n для нашего ряда равна:

Тогда сумма нашего ряда (S ) согласно определению, данному выше, равна:

Рассмотренные выше примеры являются достаточно простыми. Обычно вычислить сумму ряда гораздо сложнее и наибольшая трудность заключается именно в нахождении частичной суммы ряда. Представленный ниже онлайн калькулятор, созданный на основе системы Wolfram Alpha, позволяет вычислять сумму довольно сложных рядов. Более того, если калькулятор не смог найти сумму ряда, вероятно, что данный ряд является расходящимся (в этом случае калькулятор выводит сообщение типа "sum diverges"), т.е. данный калькулятор также косвенно помогает получить представление о сходимости рядов.

Для нахождения суммы Вашего ряда, необходимо указать переменную ряда, нижний и верхний пределы суммирования, а также выражение для n -ого слагаемого ряда (т.е. собственно выражение для самого ряда).

Числовой ряд.

Среди числ. рядов выделяют знакопостоянные, знакочередующиеся, знакопеременные.

Частичной суммой ряда соответсв. номеру n наз. сумма n первых его слагаемых.

Частичная сумма.

Ряд a n наз. сходящимся, если последовательность частичных сумм для этого ряда имеет предел, т.е. если сущ-т число . Это число наз.суммой ряда.

38. Признаки сходимости ряда

Пусть задана бесконечная последовательность чисел . Выражение. наз-ют числовым рядом. При этом числа наз. членами ряда.

Числовой ряд часто записывают в виде. Теорема (необходимый признак сходимости ряда): если ряд сходится, то его n-й член стремится к нулю при неограниченном возрастании n.

Следствие. Если n-й член ряда не стремится к нулю при , то ряд расходится.

Признак Даламбера - признак сходимости числовых рядов, установлен Жаном д’Аламбером в 1768 г.

Если для числового ряда существует такое числоq, что 0

39. Теоремы о сходимости числовых рядов.

Определение. Частной суммой числового ряда называется сумма. Числовой ряд называется сходящимся , если существует предел, при этом S называется суммой ряда.

Теорема . Числовой ряд сходится тогда и только тогда, когда для любого существует такое, что для всехm,n ><.

Доказательство .

Заметим, что . После этого утверждение превращается в критерий Коши сходимости последовательности .

Теорема .

Если ряд сходится, то.

Доказательство .

Из свойств пределов следует, что . Отсюда следует, что.

40. Эталонные ряды для установления сходимости

Геометрический ряд

Обобщеный гармонический ряд

В частности, при к=1 получаем гармонический ряд

Эталонные ряды, т.е. разложения элементарных функций, можно использовать для получения рядов тех же функций, но сложного аргумента.

41. Функциональные ряды, степенные ряды, ряды Тейлора и Маклорена

Пусть функции Un(x),n∈N, определены в области D. Выражение U 1 (x ) + U 2 (x ) +… + U n (x )+…= U n (x ), где х D , наз. функциональным рядом. Каждому значению x 0 ∈D соответствует числовой ряд U n (x 0 ) . Этот ряд может быть сходящимся или расходящимся. Если для x 0 D числовой ряд U n (x 0 ) сходится, то говорят, чтo функциональный ряд сходится в точке x 0 , и точку x 0 наз. точкой сходимости .Если функциональный ряд сходится в каждой точке x E D , то этот ряд наз. сходящимся на множестве Е , а множество Е наз. областью сходимости ряда. Если множество Е пусто, то ряд расходится в каждой точке множества D .

Областью сходимости степенного ряда называется множество всех значений переменной х, при которых соответствующий числовой ряд сходится. Ряд вида а 0 + а 1 х + а 2 х 2 + … а n х n + … = называетсястепенным рядом, а – некот. числа, х – переменная.

Коэффициентами степенного ряда называются числа а 0 , а 1 , … , а n .

Формулой Тейлора для функции f(x) в окрестности точки х называется многочлен Р n (х) = f(х 0) +Остаточным членом формулы Тейлора называется последнее слагаемое в формуле Тейлора

R n (x)= =f(x) – P n (x)

Т.о., многочлен Тейлора Р n (х) служит приближением функции f(х). Оценкой этого приближения служит остаточный член формулы Тейлора R n (х).

Формулой Маклорена для функции f(х) называется ее формула Тейлора при х 0 = 0: f(x)= f(0) +

где с – некоторая точка из интервала (0, х).

Сумма ряда

сайт позволяет найти сумму ряда онлайн числовой последовательности. Помимо нахождения суммы ряда онлайн числовой последовательности, сервер в режиме онлайн найдет частичную сумму ряда . Это полезно для аналитических выкладок, когда сумму ряда онлайн необходимо представить и найти как решение предела последовательности частичных сумм ряда . По сравнению с другими сайтами, сайт обладает неоспоримым преимуществом, так как позволяет найти сумму ряда онлайн не только числового, но и функционального ряда , что позволит определить область сходимости исходного ряда , применяя наиболее известные методы. Согласно теории рядов , необходимым условием сходимости числовой последовательности является равенство нулю предела от общего члена числового ряда при стремлении переменной к бесконечности. Однако, это условие не является достаточным для определения сходимости числового ряда онлайн .. Для определения сходимости рядов онлайн найдены разнообразные достаточные признаки сходимости или расходимости ряда . Наиболее известные и часто применяемые из них - это признаки Д"Аламбера, Коши, Раабе, сравнения числовых рядов , а также интегральный признак сходимости числового ряда . Особое место среди числовых рядов занимают такие, в которых знаки слагаемых строго чередуются, а абсолютные величины числовых рядов монотонно убывают. Оказывается, для таких числовых рядов необходимый признак сходимости ряда онлайн является одновременно и достаточным, то есть равенство нулю предела от общего члена числового ряда при стремлении переменной к бесконечности. Существует множество различных сайтов, на которых представлены серверы для вычисления суммы ряда онлайн , а также разложения функций вряд в режиме онлайн в некоторой точке из области определения этой функции. Если разложить функцию в ряд онлайн не представляет на этих серверах особого труда, то вычислить сумму функционального ряда онлайн , каждым членом которого, в отличие от числового ряда , является не число, а функция, представляется практически невозможным в силу отсутствия необходимых технических ресурсов. Для www.сайт такой проблемы не существует.

Поскольку точное значение суммы ряда удается вычислить далеко не всегда (такие задачи были нами рассмотрены), возникает проблема приближенного вычисления суммы ряда с заданной точностью.

Напомним, что -ый остаток рядаполучается из исходного рядаотбрасыванием первыхслагаемых:

Тогда, поскольку для сходящегося ряда
,

остаток сходящегося ряда равен разности между суммой ряда и -ой частичной суммой:

,

и для достаточно больших имеем приближенное равенство

.

Из определения остатка ряда следует, что абсолютная погрешность при замене точного неизвестного значения суммы его частичной суммойравна модулю остатка ряда:

.

Таким образом, если требуется вычислить сумму ряда с заданной точностью , то нужно оставить сумму такого числаслагаемых, чтобы для отброшенного остатка ряда выполнялось неравенство:

.

Метод приближенного вычисления суммы выбирается в зависимости от вида ряда:

если ряд положительный и может быть исследован на сходимость по интегральному признаку (удовлетворяет условиям соответствующей теоремы), то для оценки суммы используем формулу

;

если это ряд Лейбница, то применяем оценку:

.

В других задачах можно использовать формулу суммы бесконечно убывающей геометрической прогрессии.

Задача №1. Сколько нужно взять слагаемых ряда
, чтобы получить его сумму с точностью 0,01.

Решение. Прежде всего отметим, что данный ряд сходится. Рассмотрим-ый остаток ряда, который и является погрешностью вычислений суммы ряда:

Оценим этот ряд с помощью бесконечно убывающей геометрической прогрессии. Для этого заменим в каждом слагаемом множитель на, при этом каждое слагаемое увеличится:

После вынесения общего множителя за скобку, в скобке остался ряд, составленный из членов бесконечно убывающей геометрической прогрессии, сумму которого мы и вычислили по формуле

.

Заданная точность будет достигнута, если будет удовлетворять условию

.

Решим неравенство, учитывая, что - целое.

При
имеем

.

При
имеем

.

В силу монотонности функции
, неравенство
будет выполняться для всех
.

Следовательно, если вместо точного значения суммы мы возьмем первые пять (или более) слагаемых, то погрешность вычислений не превысит 0,01.

Ответ:
.

Задача №2. Оценить ошибку, получаемую при замене суммы ряда
суммой первых 100 слагаемых.

Решение. Заметим, что данный ряд является сходящимся и знакопеременным. Оценивать будем ряд
, состоящий из модулей исходного ряда, что сразу увеличивает погрешность вычислений. Кроме того, нам придется перейти (используя признак сравнения) к большему, более простому сходящемуся ряду:

.

Рассмотрим ряд . Поскольку этот ряд удовлетворяет условиям теоремы – интегрального признака сходимости, то для оценки погрешности вычисления суммы используем соответствующую формулу:

.

Вычислим несобственный интеграл:

погрешность вычислений можно оценить по формуле

,

по условию
, тогда.

Ответ:
.

Задача №3. Оценить ошибку, получаемую при замене суммы ряда
суммой первых 10 слагаемых.

Решение. Подчеркнем еще раз, что задача о приближенном вычислении суммы имеет смысл только для сходящегося ряда, поэтому, прежде всего отметим, что данный ряд сходится. Поскольку исследуемый ряд является знакопеременным со сложным правилом изменения знака, то оценивать придется, как и в предыдущем примере, ряд из модулей данного ряда:

.

Используя тот факт, что
при любом значении аргумента, имеем:

.

Оценим остаток ряда:

.

Мы получили ряд, составленный из членов бесконечно убывающей геометрической прогрессии, в которой

,

его сумма равна:

,

.

Ответ:
.

Задача №4. Вычислить сумму ряда
с точностью 0,01.

Решение. Данный ряд является рядом Лейбница. Для оценки погрешности верна формула:

,

другими словами, погрешность вычислений меньше модуля первого отброшенного слагаемого. Подберем номер так, чтобы

.

При
имеем

.

При
имеем

.

Погрешность
, если в качестве значения суммы возьмем сумму первых четырех слагаемых:

Ответ:
.

И т.д. – достаточно самых минимальных знаний о числовых рядах . Необходимо понимать, что такое ряд , уметь расписывать его подробно и не округлять глаза после словосочетаний «ряд сходится», «ряд расходится», «сумма ряда». Поэтому, если ваше настроение совсем на нуле, пожалуйста, уделите 5-10 минут статье Ряды для чайников (буквально первые 2-3 страницы), а потом возвращайтесь сюда и смело начинайте решать примеры!

Следует отметить, что в большинстве случаев найти сумму ряда непросто, и этот вопрос обычно решается через функциональные ряды (доживём-доживём:)) . Так, например, сумма популярного артиста выводится через ряды Фурье . В этой связи на практике почти всегда требуется установить сам факт сходимости , но не найти конкретное число (многие, думаю, уже успели это заметить). Однако среди великого множества числовых рядов есть немногочисленные представители, которые позволяют без особых проблем прикоснуться к святая святых даже полному чайнику. И на вводном уроке я приводил пример бесконечно убывающей геометрической прогрессии , сумма которой легко рассчитывается по известной школьной формуле.

В данной статье мы продолжим рассматривать похожие примеры, кроме того, узнаем строгое определение суммы и попутно познакомимся с некоторыми свойствами рядов. Разомнёмся… да прямо на прогрессиях и разомнёмся:

Пример 1

Найти сумму ряда

Решение : представим наш ряд в виде суммы двух рядов:

Почему в данном случае так можно сделать? Выполненные действия основаны на двух простейших утверждениях:

1) Если сходятся ряды , то будут сходиться и ряды, составленные из сумм или разностей соответствующих членов: . При этом существенно то обстоятельство, что речь идёт о сходящихся рядах. В нашём примере мы заранее знаем , что обе геометрические прогрессии сойдутся, а значит, без всяких сомнений раскладываем исходный ряд в два ряда.

2) Второе свойство ещё очевиднее. Константу можно вынести за пределы ряда: , и это не повлияет на его сходимость или расходимость и итоговую сумму. Зачем выносить константу? Да просто чтобы она «не мешалась под ногами». Но иногда бывает выгодно этого и не делать

Чистовое оформление примера выглядит примерно так:

Дважды используем формулу для нахождения суммы бесконечно убывающей геометрической прогрессии: , где – первый член прогрессии, – основание прогрессии.

Ответ : сумма ряда

Начало решения можно оформить несколько в другом стиле – расписать ряд напрямую и перегруппировать его члены:

Дальше по накатанной.

Пример 2

Найти сумму ряда

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Каких-либо особых изысков здесь нет, но однажды мне попался необычный ряд , который может застать врасплох неискушенного человека. Это… тоже бесконечно убывающая геометрическая прогрессия! Действительно, , и сумма рассчитывается буквально за пару мгновений: .

А сейчас живительный глоток математического анализа, необходимый для решения дальнейших задач:

Что такое сумма ряда?

Строгое определение сходимости/расходимости и суммы ряда в теории даётся через так называемые частичные суммы ряда. Частичные – значит неполные. Распишем частичные суммы числового ряда :

И особую роль играет частичная сумма «эн» членов ряда:

Если предел частичных сумм числового ряда равен конечному числу: , то такой ряд называют сходящимся , а само число – суммой ряда . Если же предел бесконечен либо его не существует, то ряд называют расходящимся .

Вернёмся к демонстрационному ряду и распишем его частичные суммы:

Предел частичных сумм – есть в точности бесконечно убывающая геометрическая прогрессия, сумма которой равна: . Похожий предел мы рассматривали на уроке о числовых последовательностях . Собственно, и сама формула – это прямое следствие вышеизложенных теоретических выкладок (см. 2-ой том матана).

Таким образом, прорисовывается общий алгоритм решения нашей задачи : необходимо составить энную частичную сумму ряда и найти предел . Посмотрим, как это осуществляется на практике:

Пример 3

Вычислить сумму ряда

Решение : на первом шаге нужно разложить общий член ряда в сумму дробей. Используем метод неопределённых коэффициентов :

В результате:

Сразу же полезно провести обратное действие, выполнив тем самым проверку:

Получен общий член ряда в исходном виде, следовательно, разложение в сумму дробей проведено успешно.

Теперь составим частичную сумму ряда . Вообще это делается устно, но один раз я максимально подробно распишу, что откуда взялось:

Как записать совершенно понятно, но чему равен предыдущий член ? В общий член ряда ВМЕСТО «эн» подставляем :

Почти все слагаемые частичной суммы благополучно сокращаются:


Прямо такие пометки и делаем карандашом в тетради. Чертовски удобно.

Осталось вычислить элементарный предел и узнать сумму ряда:

Ответ :

Аналогичный ряд для самостоятельного решения:

Пример 4

Вычислить сумму ряда

Примерный образец чистового оформления решения в конце урока.

Очевидно, что нахождение суммы ряда – это само по себе доказательство его сходимости (помимо признаков сравнения , Даламбера, Коши и др.), о чём, в частности, намекает формулировка следующего задания:

Пример 5

Найти сумму ряда или установить его расходимость

По внешнему виду общего члена можно сразу сказать, как ведёт себя этот товарищ. Без комплексов. С помощью предельного признака сравнения легко выяснить (причём даже устно), что данный ряд будет сходиться вместе с рядом . Но перед нами редкий случай, когда без особых хлопот рассчитывается ещё и сумма.

Решение : разложим знаменатель дроби в произведение. Для этого нужно решить квадратное уравнение :

Таким образом:

Множители лучше расположить в порядке возрастания: .

Выполним промежуточную проверку:

ОК

Таким образом, общий член ряда:

Таким образом:

Не ленимся:

Что и требовалось проверить.

Запишем частичную сумму «эн» членов ряда, при этом обращаем внимание на тот факт, что «счётчик» ряда «начинает работать» с номера . Как и в предыдущих примерах, надёжнее растянуть кобру на приличную длину:

Однако если мы запишем в одну-две строчки, то всё равно будет довольно трудно сориентироваться в сокращениях слагаемых (их таки 3 в каждом члене). И здесь нам на помощь придёт… геометрия. Заставим плясать змею под свою дудочку:

Да, прямо так и пишем в тетради один член под другим и прямо так их вычёркиваем. Кстати, собственное изобретение. Как понимаете, не от самого лёгкого задания в этой жизни =)

В результате всех сокращений получаем:

И, наконец, сумма ряда:

Ответ :

Пример 8

Вычислить сумму ряда

Это пример для самостоятельного решения.

Рассматриваемая задача, конечно, не радует нас разнообразием – на практике встречается либо бесконечно убывающая геометрическая прогрессия, либо ряд с дробно-рациональным общим членом и разложимым многочленом в знаменателе (к слову, далеко не каждый такой многочлен даёт возможность найти сумму ряда). Но, тем не менее, иногда попадаются необычные экземпляры, и по сложившейся доброй традиции я завершаю урок какой-нибудь любопытной задачей.

Новое на сайте

>

Самое популярное